The given quadratic equation is:
\( x^2 - (3 - 2i)x - (2i - 2) = 0 \)
Using the quadratic formula:
\[
x = \frac{(3 - 2i) \pm \sqrt{(3 - 2i)^2 - 4(1)(-(2i - 2))}}{2(1)}
\]
Expanding the terms inside the square root:
\[
x = \frac{(3 - 2i) \pm \sqrt{9 - 4i^2 - 4(1)(-2i + 2)}}{2}
\]
\[
= \frac{3 - 2i \pm \sqrt{9 - 4(-1) - 12i + 8i - 8}}{2}
\]
\[
= \frac{3 - 2i \pm \sqrt{-3 - 4i}}{2}
\]
Breaking the square root term into a solvable form:
\[
= 3 - 2i \pm \sqrt{(1)^2 + (2i)^2 - 2(1)(2i)}
\]
\[
= 3 - 2i \pm (1)^{2} + (2i)^{2} - 2(1)(2i)
\]
The final roots are:
\( x = 2 - 2i \quad \text{or} \quad x = 1 + 0i \)
From the roots obtained, we have:
\( \alpha \beta = 2(1) \cdot (-2)(0) = 2 \)
Let \( z \) satisfy \( |z| = 1, \ z = 1 - \overline{z} \text{ and } \operatorname{Im}(z)>0 \)
Then consider:
Statement-I: \( z \) is a real number
Statement-II: Principal argument of \( z \) is \( \dfrac{\pi}{3} \)
Then:
If \( z \) and \( \omega \) are two non-zero complex numbers such that \( |z\omega| = 1 \) and
\[ \arg(z) - \arg(\omega) = \frac{\pi}{2}, \]
Then the value of \( \overline{z\omega} \) is:
The largest $ n \in \mathbb{N} $ such that $ 3^n $ divides 50! is:
The term independent of $ x $ in the expansion of $$ \left( \frac{x + 1}{x^{3/2} + 1 - \sqrt{x}} \cdot \frac{x + 1}{x - \sqrt{x}} \right)^{10} $$ for $ x>1 $ is: