The given quadratic equation is:
\( x^2 - (3 - 2i)x - (2i - 2) = 0 \)
Using the quadratic formula:
\[
x = \frac{(3 - 2i) \pm \sqrt{(3 - 2i)^2 - 4(1)(-(2i - 2))}}{2(1)}
\]
Expanding the terms inside the square root:
\[
x = \frac{(3 - 2i) \pm \sqrt{9 - 4i^2 - 4(1)(-2i + 2)}}{2}
\]
\[
= \frac{3 - 2i \pm \sqrt{9 - 4(-1) - 12i + 8i - 8}}{2}
\]
\[
= \frac{3 - 2i \pm \sqrt{-3 - 4i}}{2}
\]
Breaking the square root term into a solvable form:
\[
= 3 - 2i \pm \sqrt{(1)^2 + (2i)^2 - 2(1)(2i)}
\]
\[
= 3 - 2i \pm (1)^{2} + (2i)^{2} - 2(1)(2i)
\]
The final roots are:
\( x = 2 - 2i \quad \text{or} \quad x = 1 + 0i \)
From the roots obtained, we have:
\( \alpha \beta = 2(1) \cdot (-2)(0) = 2 \)
Let \( T_r \) be the \( r^{\text{th}} \) term of an A.P. If for some \( m \), \( T_m = \dfrac{1}{25} \), \( T_{25} = \dfrac{1}{20} \), and \( \displaystyle\sum_{r=1}^{25} T_r = 13 \), then \( 5m \displaystyle\sum_{r=m}^{2m} T_r \) is equal to:
Given below are two statements: one is labelled as Assertion (A) and the other is labelled as Reason (R).
Assertion (A): The density of the copper ($^{64}Cu$) nucleus is greater than that of the carbon ($^{12}C$) nucleus.
Reason (R): The nucleus of mass number A has a radius proportional to $A^{1/3}$.
In the light of the above statements, choose the most appropriate answer from the options given below: