The given quadratic equation is:
\( x^2 - (3 - 2i)x - (2i - 2) = 0 \)
Using the quadratic formula:
\[
x = \frac{(3 - 2i) \pm \sqrt{(3 - 2i)^2 - 4(1)(-(2i - 2))}}{2(1)}
\]
Expanding the terms inside the square root:
\[
x = \frac{(3 - 2i) \pm \sqrt{9 - 4i^2 - 4(1)(-2i + 2)}}{2}
\]
\[
= \frac{3 - 2i \pm \sqrt{9 - 4(-1) - 12i + 8i - 8}}{2}
\]
\[
= \frac{3 - 2i \pm \sqrt{-3 - 4i}}{2}
\]
Breaking the square root term into a solvable form:
\[
= 3 - 2i \pm \sqrt{(1)^2 + (2i)^2 - 2(1)(2i)}
\]
\[
= 3 - 2i \pm (1)^{2} + (2i)^{2} - 2(1)(2i)
\]
The final roots are:
\( x = 2 - 2i \quad \text{or} \quad x = 1 + 0i \)
From the roots obtained, we have:
\( \alpha \beta = 2(1) \cdot (-2)(0) = 2 \)
\[ B = \left\{ x \geq 0 : \sqrt{x}(\sqrt{x - 4}) - 3\sqrt{x - 2} + 6 = 0 \right\}. \]
Then \( n(A \cup B) \) is equal to:
The steam volatile compounds among the following are: