The given quadratic equation is:
\( x^2 - (3 - 2i)x - (2i - 2) = 0 \)
Using the quadratic formula:
\[
x = \frac{(3 - 2i) \pm \sqrt{(3 - 2i)^2 - 4(1)(-(2i - 2))}}{2(1)}
\]
Expanding the terms inside the square root:
\[
x = \frac{(3 - 2i) \pm \sqrt{9 - 4i^2 - 4(1)(-2i + 2)}}{2}
\]
\[
= \frac{3 - 2i \pm \sqrt{9 - 4(-1) - 12i + 8i - 8}}{2}
\]
\[
= \frac{3 - 2i \pm \sqrt{-3 - 4i}}{2}
\]
Breaking the square root term into a solvable form:
\[
= 3 - 2i \pm \sqrt{(1)^2 + (2i)^2 - 2(1)(2i)}
\]
\[
= 3 - 2i \pm (1)^{2} + (2i)^{2} - 2(1)(2i)
\]
The final roots are:
\( x = 2 - 2i \quad \text{or} \quad x = 1 + 0i \)
From the roots obtained, we have:
\( \alpha \beta = 2(1) \cdot (-2)(0) = 2 \)
Let \(S=\left\{ z\in\mathbb{C}:\left|\frac{z-6i}{z-2i}\right|=1 \text{ and } \left|\frac{z-8+2i}{z+2i}\right|=\frac{3}{5} \right\}.\)
Then $\sum_{z\in S}|z|^2$ is equal to
In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 
Method used for separation of mixture of products (B and C) obtained in the following reaction is: 