The first digit must be \( \geq 5 \) to ensure the number is greater than 50000. This restricts the first digit to 5, 6, or 7.
For each valid first digit \( d_1 \) (5, 6, or 7), determine possible last digits \( d_5 \) such that their sum \( d_1 + d_5 \leq 8 \):
\[ \begin{aligned} \text{For } d_1 = 5: & \quad \text{Possible } d_5 \text{ are } 0, 1, 2, 3 \quad \text{(4 choices)} \\ \text{For } d_1 = 6: & \quad \text{Possible } d_5 \text{ are } 0, 1, 2 \quad \text{(3 choices)} \\ \text{For } d_1 = 7: & \quad \text{Possible } d_5 \text{ are } 0, 1 \quad \text{(2 choices)} \end{aligned} \]Each of the middle three digits (\(d_2, d_3, d_4\)) can be any of the 8 digits (0-7). Calculating the combinations for each case:
\[ \begin{aligned} \text{For } d_1 = 5: & \quad 4 \times 8^3 = 2048 \\ \text{For } d_1 = 6: & \quad 3 \times 8^3 = 1536 \\ \text{For } d_1 = 7: & \quad 2 \times 8^3 = 1024 \end{aligned} \]The total number of such 5-digit numbers greater than 50000, formed under the given constraints, is 4608.
All the letters of the word "GTWENTY" are written in all possible ways with or without meaning, and these words are arranged as in a dictionary. The serial number of the word "GTWENTY" is:
The molarity of a 70% (mass/mass) aqueous solution of a monobasic acid (X) is:
The velocity-time graph of an object moving along a straight line is shown in the figure. What is the distance covered by the object between \( t = 0 \) to \( t = 4s \)?
A proton is moving undeflected in a region of crossed electric and magnetic fields at a constant speed of \( 2 \times 10^5 \, \text{m/s} \). When the electric field is switched off, the proton moves along a circular path of radius 2 cm. The magnitude of electric field is \( x \times 10^4 \, \text{N/C} \). The value of \( x \) is \(\_\_\_\_\_\). (Take the mass of the proton as \( 1.6 \times 10^{-27} \, \text{kg} \)).