The first digit must be \( \geq 5 \) to ensure the number is greater than 50000. This restricts the first digit to 5, 6, or 7.
For each valid first digit \( d_1 \) (5, 6, or 7), determine possible last digits \( d_5 \) such that their sum \( d_1 + d_5 \leq 8 \):
\[ \begin{aligned} \text{For } d_1 = 5: & \quad \text{Possible } d_5 \text{ are } 0, 1, 2, 3 \quad \text{(4 choices)} \\ \text{For } d_1 = 6: & \quad \text{Possible } d_5 \text{ are } 0, 1, 2 \quad \text{(3 choices)} \\ \text{For } d_1 = 7: & \quad \text{Possible } d_5 \text{ are } 0, 1 \quad \text{(2 choices)} \end{aligned} \]Each of the middle three digits (\(d_2, d_3, d_4\)) can be any of the 8 digits (0-7). Calculating the combinations for each case:
\[ \begin{aligned} \text{For } d_1 = 5: & \quad 4 \times 8^3 = 2048 \\ \text{For } d_1 = 6: & \quad 3 \times 8^3 = 1536 \\ \text{For } d_1 = 7: & \quad 2 \times 8^3 = 1024 \end{aligned} \]The total number of such 5-digit numbers greater than 50000, formed under the given constraints, is 4608.
The number of strictly increasing functions \(f\) from the set \(\{1, 2, 3, 4, 5, 6\}\) to the set \(\{1, 2, 3, ...., 9\}\) such that \(f(i)>i\) for \(1 \le i \le 6\), is equal to:
Let \( \alpha = \dfrac{-1 + i\sqrt{3}}{2} \) and \( \beta = \dfrac{-1 - i\sqrt{3}}{2} \), where \( i = \sqrt{-1} \). If
\[ (7 - 7\alpha + 9\beta)^{20} + (9 + 7\alpha - 7\beta)^{20} + (-7 + 9\alpha + 7\beta)^{20} + (14 + 7\alpha + 7\beta)^{20} = m^{10}, \] then the value of \( m \) is ___________.