The first digit must be \( \geq 5 \) to ensure the number is greater than 50000. This restricts the first digit to 5, 6, or 7.
For each valid first digit \( d_1 \) (5, 6, or 7), determine possible last digits \( d_5 \) such that their sum \( d_1 + d_5 \leq 8 \):
\[ \begin{aligned} \text{For } d_1 = 5: & \quad \text{Possible } d_5 \text{ are } 0, 1, 2, 3 \quad \text{(4 choices)} \\ \text{For } d_1 = 6: & \quad \text{Possible } d_5 \text{ are } 0, 1, 2 \quad \text{(3 choices)} \\ \text{For } d_1 = 7: & \quad \text{Possible } d_5 \text{ are } 0, 1 \quad \text{(2 choices)} \end{aligned} \]Each of the middle three digits (\(d_2, d_3, d_4\)) can be any of the 8 digits (0-7). Calculating the combinations for each case:
\[ \begin{aligned} \text{For } d_1 = 5: & \quad 4 \times 8^3 = 2048 \\ \text{For } d_1 = 6: & \quad 3 \times 8^3 = 1536 \\ \text{For } d_1 = 7: & \quad 2 \times 8^3 = 1024 \end{aligned} \]The total number of such 5-digit numbers greater than 50000, formed under the given constraints, is 4608.
If all the words with or without meaning made using all the letters of the word "KANPUR" are arranged as in a dictionary, then the word at 440th position in this arrangement is:
Consider the following sequence of reactions : 
Molar mass of the product formed (A) is ______ g mol\(^{-1}\).
The magnitude of heat exchanged by a system for the given cyclic process ABC (as shown in the figure) is (in SI units):
