Let \( A = \begin{bmatrix} 3 & -4 \\ 1 & -1 \end{bmatrix} \) and
\( B = \begin{bmatrix} 29 & 49 \\1 & 2 \end{bmatrix} \).
If \( (A^5 + B)\begin{bmatrix} x\\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \), then find \( (x, y) \).
Show Hint
If a square matrix multiplying a vector gives the zero vector and the matrix is non-singular, the only possible solution is the \textbf{trivial solution} \( (0,0) \).