Concept:
If a matrix \( M \) multiplies a vector and gives the zero vector,
\[
M \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix},
\]
then either:
the determinant of \( M \) is zero (infinitely many solutions), or
the determinant of \( M \) is non-zero, in which case the only solution is the trivial solution \( x = 0, y = 0 \).
Step 1: Compute successive powers of \( A \).
\[
A = \begin{bmatrix} 3 & -4 \\ 1 & -1 \end{bmatrix}
\]
\[
A^2 = \begin{bmatrix} 5 & -8 \\ 2 & -3 \end{bmatrix}, \quad
A^3 = \begin{bmatrix} 7 & -12 \\ 3 & -5 \end{bmatrix}
\]
\[
A^4 = \begin{bmatrix} 9 & -16 \\ 4 & -7 \end{bmatrix}, \quad
A^5 = \begin{bmatrix} 11 & -20 \\ 5 & -9 \end{bmatrix}
\]
Step 2: Add matrix \( B \).
\[
A^5 + B
= \begin{bmatrix} 11 & -20 \\ 5 & -9 \end{bmatrix}
+ \begin{bmatrix} 29 & 49 \\ 1 & 2 \end{bmatrix}
= \begin{bmatrix} 40 & 29 \\ 6 & -7 \end{bmatrix}
\]
Step 3: Form the system of linear equations.
\[
\begin{bmatrix} 40 & 29 \\ 6 & -7 \end{bmatrix}
\begin{bmatrix} x \\ y \end{bmatrix}
=
\begin{bmatrix} 0 \\ 0 \end{bmatrix}
\]
This gives:
\[
40x + 29y = 0 \quad \cdots (1)
\]
\[
6x - 7y = 0 \quad \cdots (2)
\]
Step 4: Solve the equations.
From equation (2):
\[
y = \frac{6}{7}x
\]
Substitute into equation (1):
\[
40x + 29\left(\frac{6}{7}x\right) = 0
\]
\[
x\left(40 + \frac{174}{7}\right) = 0
\]
Since the coefficient is non-zero,
\[
x = 0 \quad \Rightarrow \quad y = 0
\]