Let \( S = (2 + \sqrt{3})^8 \). To find the sum of all rational terms in the binomial expansion, we use: \[ (2 + \sqrt{3})^8 + (2 - \sqrt{3})^8 \] This removes all irrational terms since they cancel out in the symmetric expansion.
So the sum of rational terms is: \[ \frac{(2 + \sqrt{3})^8 + (2 - \sqrt{3})^8}{2} \]
We can also directly select terms where the exponent of \( \sqrt{3} \) is even (to ensure the term is rational).
From the binomial expansion: \[ = \binom{8}{0}(2)^8 + \binom{8}{2}(2)^6(\sqrt{3})^2 + \binom{8}{4}(2)^4(\sqrt{3})^4 + \binom{8}{6}(2)^2(\sqrt{3})^6 + \binom{8}{8}(\sqrt{3})^8 \] \[ = 2^8 + 28 \cdot 2^6 \cdot 3 + 70 \cdot 2^4 \cdot 9 + 28 \cdot 2^2 \cdot 27 + 1 \cdot 81 \] \[ = 256 + 5376 + 10080 + 3024 + 81 = 18817 \]
The term independent of $ x $ in the expansion of $$ \left( \frac{x + 1}{x^{3/2} + 1 - \sqrt{x}} \cdot \frac{x + 1}{x - \sqrt{x}} \right)^{10} $$ for $ x>1 $ is:
Let \[ I(x) = \int \frac{dx}{(x-11)^{\frac{11}{13}} (x+15)^{\frac{15}{13}}} \] If \[ I(37) - I(24) = \frac{1}{4} \left( b^{\frac{1}{13}} - c^{\frac{1}{13}} \right) \] where \( b, c \in \mathbb{N} \), then \[ 3(b + c) \] is equal to:
For the thermal decomposition of \( N_2O_5(g) \) at constant volume, the following table can be formed, for the reaction mentioned below: \[ 2 N_2O_5(g) \rightarrow 2 N_2O_4(g) + O_2(g) \] Given: Rate constant for the reaction is \( 4.606 \times 10^{-2} \text{ s}^{-1} \).