Let \( S = (2 + \sqrt{3})^8 \). To find the sum of all rational terms in the binomial expansion, we use: \[ (2 + \sqrt{3})^8 + (2 - \sqrt{3})^8 \] This removes all irrational terms since they cancel out in the symmetric expansion.
So the sum of rational terms is: \[ \frac{(2 + \sqrt{3})^8 + (2 - \sqrt{3})^8}{2} \]
We can also directly select terms where the exponent of \( \sqrt{3} \) is even (to ensure the term is rational).
From the binomial expansion: \[ = \binom{8}{0}(2)^8 + \binom{8}{2}(2)^6(\sqrt{3})^2 + \binom{8}{4}(2)^4(\sqrt{3})^4 + \binom{8}{6}(2)^2(\sqrt{3})^6 + \binom{8}{8}(\sqrt{3})^8 \] \[ = 2^8 + 28 \cdot 2^6 \cdot 3 + 70 \cdot 2^4 \cdot 9 + 28 \cdot 2^2 \cdot 27 + 1 \cdot 81 \] \[ = 256 + 5376 + 10080 + 3024 + 81 = 18817 \]
In the expansion of $\left( \sqrt{5} + \frac{1}{\sqrt{5}} \right)^n$, $n \in \mathbb{N}$, if the ratio of $15^{th}$ term from the beginning to the $15^{th}$ term from the end is $\frac{1}{6}$, then the value of $^nC_3$ is:
If
$ 2^m 3^n 5^k, \text{ where } m, n, k \in \mathbb{N}, \text{ then } m + n + k \text{ is equal to:} $
In the following circuit, the reading of the ammeter will be: (Take Zener breakdown voltage = 4 V)
If $10 \sin^4 \theta + 15 \cos^4 \theta = 6$, then the value of $\frac{27 \csc^6 \theta + 8 \sec^6 \theta}{16 \sec^8 \theta}$ is:
If the area of the region $\{ (x, y) : |x - 5| \leq y \leq 4\sqrt{x} \}$ is $A$, then $3A$ is equal to
Let $A = \begin{bmatrix} \cos \theta & 0 & -\sin \theta \\ 0 & 1 & 0 \\ \sin \theta & 0 & \cos \theta \end{bmatrix}$. If for some $\theta \in (0, \pi)$, $A^2 = A^T$, then the sum of the diagonal elements of the matrix $(A + I)^3 + (A - I)^3 - 6A$ is equal to
Let $A = \{ z \in \mathbb{C} : |z - 2 - i| = 3 \}$, $B = \{ z \in \mathbb{C} : \text{Re}(z - iz) = 2 \}$, and $S = A \cap B$. Then $\sum_{z \in S} |z|^2$ is equal to