Let \( S = (2 + \sqrt{3})^8 \). To find the sum of all rational terms in the binomial expansion, we use: \[ (2 + \sqrt{3})^8 + (2 - \sqrt{3})^8 \] This removes all irrational terms since they cancel out in the symmetric expansion.
So the sum of rational terms is: \[ \frac{(2 + \sqrt{3})^8 + (2 - \sqrt{3})^8}{2} \]
We can also directly select terms where the exponent of \( \sqrt{3} \) is even (to ensure the term is rational).
From the binomial expansion: \[ = \binom{8}{0}(2)^8 + \binom{8}{2}(2)^6(\sqrt{3})^2 + \binom{8}{4}(2)^4(\sqrt{3})^4 + \binom{8}{6}(2)^2(\sqrt{3})^6 + \binom{8}{8}(\sqrt{3})^8 \] \[ = 2^8 + 28 \cdot 2^6 \cdot 3 + 70 \cdot 2^4 \cdot 9 + 28 \cdot 2^2 \cdot 27 + 1 \cdot 81 \] \[ = 256 + 5376 + 10080 + 3024 + 81 = 18817 \]
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: