Let \(A=\) [\(a_{ij}\)]\(_{2\times2}\) be a matrix and \(A^2 = I\) where \(a_{ij} \neq0\). If a sum of diagonal elements and b=det(A), then \(3a^2+4b^2\) is
f domain of the function \[ f(x) = \log_e \left(\frac{6x^2 + 5x + 1}{2x - 1}\right) + \cos^{-1}\left(\frac{2x^2 - 3x + 4}{3x - 5}\right) \] is \( (\alpha, \beta) \cup (\gamma, \delta) \), then \( 18(\alpha^2 + \beta^2 + \gamma^2 + \delta^2) \) is equal to __________.
Let A =\(\left[\begin{matrix} 2 & 1 & 0 \\ 1 & 2 & -1 \\ 0 & -1 & 2 \end{matrix} \right]\). If |adj(adj(adj 2A)) | = (16)n, then n is equal to
If the function \(f(x)=\begin{cases}(1+|\cos x|) \frac{\lambda}{|\cos x|} & , 0 < x < \frac{\pi}{2} \\\mu & , \quad x=\frac{\pi}{2} \\\frac{\cot 6 x}{e^{\cot 4 x}} & \frac{\pi}{2}< x< \pi\end{cases}\)is continuous at \(x=\frac{\pi}{2}, then 9 \lambda+6 \log _{ e } \mu+\mu^6- e ^{6 \lambda}\) is equal to
List I
(Reagents Used)
List II
(Compound with Functional group detected)
Choose the correct answer from the options given below :
Let the number \((22)^{2022}\) + \((2022)^{22}\) leave the remainder \( \alpha \) when divided by 3 and \( \beta \) when divided by 7. Then \( (\alpha^2 + \beta^2) \) is equal to:}
Match List I with List II
Choose the correct answer from the options given below.
Choose the correct answer from the options given below: