Let a function ƒ : N →N be defined by \(f(n) = \left\{ \begin{array}{ll} 2n & n = 2,4,6,8,\ldots \\ n - 1 & n = 3,7,11,15,\ldots \\ \frac{n+1}{2} & n = 1,5,9,13 \end{array} \right.\)then, ƒ is
For k ∈ R, let the solution of the equation\(\cos\left(\sin^{-1}\left(x \cot\left(\tan^{-1}\left(\cos\left(\sin^{-1}\right)\right)\right)\right)\right) = k, \quad 0 < |x| < \frac{1}{\sqrt{2}}\)Inverse trigonometric functions take only principal values. If the solutions of the equation x2 – bx – 5 = 0 are\(\frac{1}{α^2}+\frac{1}{β^2} \)and \(\frac{α}{β}\), then b/k2 is equal to_____.
Let the minimum value v0 ofv = |z|2+|z-3|2+|z-6i|2,z∈Cis attained at z = z0. Then\(|2z^2_0-\overline{z}^3_0+3|^2+v^2_0\)is equal to
Match List-I with List-II.
Choose the correct answer from the options given below.
Two vectors \(\overrightarrow{A}+\overrightarrow{B}\) have equal magnitudes. If magnitude of \(\overrightarrow{A}+\overrightarrow{B}\) is equal to two times the magnitude of \(\overrightarrow{A}-\overrightarrow{B}\) then the angle between vec A and \(\overrightarrow{B}\) will be