Let A =\(\left[\begin{matrix} 2 & 1 & 0 \\ 1 & 2 & -1 \\ 0 & -1 & 2 \end{matrix} \right]\). If |adj(adj(adj 2A)) | = (16)n, then n is equal to
We are given the matrix \( A \), and we need to calculate the value of \( n \) in the equation \( \left| \text{adj}(\text{adj}(\text{adj}(2A))) \right| = (16)^n \).
Step 1: Find the determinant of \( A \).
From the given matrix \( A \), we calculate the determinant \( |A| \): \[ |A| = 2[3] - 1[2] = 4. \] Step 2: Use the properties of the adjugate matrix.
We know the following properties of the adjugate matrix: \[ | \text{adj}(A) | = |A|^{n-1}. \] Therefore, \[ | \text{adj}(\text{adj}(\text{adj}(2A))) | = 2A |(n-1)3 = |2A|^8 = 16^n. \] Step 3: Simplify the equation.
We can now solve the equation: \[ (3^2) 4 = 16n = 16^n. \] Simplifying further: \[ (23 \times 32)^8 = 16^n \quad \Rightarrow 2^{40} = 16^n \quad \Rightarrow 16^{10} = 16^n \quad \Rightarrow n = 10. \] Final Answer: \( n = 10 \).
Calculate the determinant of the matrix:

In the following \(p\text{–}V\) diagram, the equation of state along the curved path is given by \[ (V-2)^2 = 4ap, \] where \(a\) is a constant. The total work done in the closed path is: 
Let \( ABC \) be a triangle. Consider four points \( p_1, p_2, p_3, p_4 \) on the side \( AB \), five points \( p_5, p_6, p_7, p_8, p_9 \) on the side \( BC \), and four points \( p_{10}, p_{11}, p_{12}, p_{13} \) on the side \( AC \). None of these points is a vertex of the triangle \( ABC \). Then the total number of pentagons that can be formed by taking all the vertices from the points \( p_1, p_2, \ldots, p_{13} \) is ___________.
Consider the following two reactions A and B: 
The numerical value of [molar mass of $x$ + molar mass of $y$] is ___.