Let A =\(\left[\begin{matrix} 2 & 1 & 0 \\ 1 & 2 & -1 \\ 0 & -1 & 2 \end{matrix} \right]\). If |adj(adj(adj 2A)) | = (16)n, then n is equal to
We are given the matrix \( A \), and we need to calculate the value of \( n \) in the equation \( \left| \text{adj}(\text{adj}(\text{adj}(2A))) \right| = (16)^n \).
Step 1: Find the determinant of \( A \).
From the given matrix \( A \), we calculate the determinant \( |A| \): \[ |A| = 2[3] - 1[2] = 4. \] Step 2: Use the properties of the adjugate matrix.
We know the following properties of the adjugate matrix: \[ | \text{adj}(A) | = |A|^{n-1}. \] Therefore, \[ | \text{adj}(\text{adj}(\text{adj}(2A))) | = 2A |(n-1)3 = |2A|^8 = 16^n. \] Step 3: Simplify the equation.
We can now solve the equation: \[ (3^2) 4 = 16n = 16^n. \] Simplifying further: \[ (23 \times 32)^8 = 16^n \quad \Rightarrow 2^{40} = 16^n \quad \Rightarrow 16^{10} = 16^n \quad \Rightarrow n = 10. \] Final Answer: \( n = 10 \).
A, B, C, D are square matrices such that A + B is symmetric, A - B is skew-symmetric, and D is the transpose of C.
If
\[ A = \begin{bmatrix} -1 & 2 & 3 \\ 4 & 3 & -2 \\ 3 & -4 & 5 \end{bmatrix} \]
and
\[ C = \begin{bmatrix} 0 & 1 & -2 \\ 2 & -1 & 0 \\ 0 & 2 & 1 \end{bmatrix} \]
then the matrix \( B + D \) is:
Given matrices \( A \) and \( B \) where:
and the condition:
If matrix \( C \) is defined as:
then the trace of \( C \) is:
Matrix Inverse Sum Calculation
Given the matrix:
A = | 1 2 2 | | 3 2 3 | | 1 1 2 |
The inverse matrix is represented as:
A-1 = | a11 a12 a13 | | a21 a22 a23 | | a31 a32 a33 |
The sum of all elements in A-1 is:
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: