f domain of the function \[ f(x) = \log_e \left(\frac{6x^2 + 5x + 1}{2x - 1}\right) + \cos^{-1}\left(\frac{2x^2 - 3x + 4}{3x - 5}\right) \] is \( (\alpha, \beta) \cup (\gamma, \delta) \), then \( 18(\alpha^2 + \beta^2 + \gamma^2 + \delta^2) \) is equal to __________.
To find the domain of composite functions, solve each condition step by step, and take the intersection of all valid ranges.
To determine the domain of \( f(x) \), the following conditions must be satisfied:
1. Condition for the logarithmic term: The argument of the logarithmic function must be positive:
\[ \frac{6x^2 + 5x + 1}{2x - 1} > 0. \]
Analyze the sign changes of the numerator and denominator:
\[ \text{Numerator: } 6x^2 + 5x + 1 = 0 \quad \Rightarrow \quad x = -\frac{1}{2}, -\frac{1}{3}. \]
\[ \text{Denominator: } 2x - 1 = 0 \quad \Rightarrow \quad x = \frac{1}{2}. \]
The critical points divide the real line into intervals:
\[ (-\infty, -\frac{1}{2}), \quad (-\frac{1}{2}, -\frac{1}{3}), \quad (-\frac{1}{3}, \frac{1}{2}), \quad (\frac{1}{2}, \infty). \]
Test the sign of \( \frac{6x^2 + 5x + 1}{2x - 1} \) in each interval to determine positivity:
\[ \text{Valid intervals: } (-\frac{1}{2}, -\frac{1}{3}) \cup (\frac{1}{2}, \infty). \]
2. Condition for the inverse cosine term:
The argument of \( \cos^{-1} \) must lie in the interval \( [-1, 1] \):
\[ -1 \leq \frac{2x^2 - 3x + 4}{3x - 5} \leq 1. \]
Solve the inequality:
\[ \text{Numerator: } 2x^2 - 3x + 4, \quad \text{Denominator: } 3x - 5. \]
Analyze the critical points and test the valid ranges.
3. Combine the results:
The final domain of \( f(x) \) is \( (\alpha, \beta) \cup (\gamma, \delta) \), where:
\[ (\alpha, \beta) = (-\frac{1}{2}, -\frac{1}{3}), \quad (\gamma, \delta) = (\frac{1}{2}, \infty). \]
4. Calculate \( 18(\alpha^2 + \beta^2 + \gamma^2 + \delta^2) \):
Substitute the values:
\[ \alpha = -\frac{1}{2}, \quad \beta = -\frac{1}{3}, \quad \gamma = \frac{1}{2}, \quad \delta = \infty \, (\text{ignore } \infty \text{ for practical domain calculations}). \]
Calculate:
\[ 180\left[(-\frac{1}{2})^2 + (-\frac{1}{3})^2 + (\frac{1}{2})^2 + (\frac{1}{3})^2\right] = 180\left(\frac{1}{4} + \frac{1}{9} + \frac{1}{4} + \frac{1}{9}\right). \]
Final Answer:
\[ 20 \, \]
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: