From the given equation:
\[ \vec{B} - \vec{A} = 2\hat{j}. \]
Add \( \vec{A} \) to both sides:
\[ \vec{B} = 2\hat{j} + \vec{A}. \]
Substitute \( \vec{A} = 2\hat{i} + 3\hat{j} + 2\hat{k} \):
\[ \vec{B} = 2\hat{j} + (2\hat{i} + 3\hat{j} + 2\hat{k}). \]
Simplify:
\[ \vec{B} = 2\hat{i} + 5\hat{j} + 2\hat{k}. \]
The magnitude of a vector \( \vec{B} = x\hat{i} + y\hat{j} + z\hat{k} \) is given by:
\[ |\vec{B}| = \sqrt{x^2 + y^2 + z^2}. \]
For \( \vec{B} = 2\hat{i} + 5\hat{j} + 2\hat{k} \):
\[ |\vec{B}| = \sqrt{2^2 + 5^2 + 2^2}. \]
Simplify the expression:
\[ |\vec{B}| = \sqrt{4 + 25 + 4} = \sqrt{33}. \]
The magnitude of vector \( \vec{B} \) is \( \sqrt{33} \).
Let $ \vec{a} = \hat{i} + 2\hat{j} + \hat{k} $, $ \vec{b} = 3\hat{i} - 3\hat{j} + 3\hat{k} $, $ \vec{c} = 2\hat{i} - \hat{j} + 2\hat{k} $ and $ \vec{d} $ be a vector such that $ \vec{b} \times \vec{d} = \vec{c} \times \vec{d} $ and $ \vec{a} \cdot \vec{d} = 4 $. Then $ |\vec{a} \times \vec{d}|^2 $ is equal to _______
Let $L_1: \frac{x-1}{1} = \frac{y-2}{-1} = \frac{z-1}{2}$ and $L_2: \frac{x+1}{-1} = \frac{y-2}{2} = \frac{z}{1}$ be two lines. Let $L_3$ be a line passing through the point $(\alpha, \beta, \gamma)$ and be perpendicular to both $L_1$ and $L_2$. If $L_3$ intersects $L_1$, then $\left| 5\alpha - 11\beta - 8\gamma \right|$ equals:
For a statistical data \( x_1, x_2, \dots, x_{10} \) of 10 values, a student obtained the mean as 5.5 and \[ \sum_{i=1}^{10} x_i^2 = 371. \] He later found that he had noted two values in the data incorrectly as 4 and 5, instead of the correct values 6 and 8, respectively.
The variance of the corrected data is: