From the given equation:
\[ \vec{B} - \vec{A} = 2\hat{j}. \]
Add \( \vec{A} \) to both sides:
\[ \vec{B} = 2\hat{j} + \vec{A}. \]
Substitute \( \vec{A} = 2\hat{i} + 3\hat{j} + 2\hat{k} \):
\[ \vec{B} = 2\hat{j} + (2\hat{i} + 3\hat{j} + 2\hat{k}). \]
Simplify:
\[ \vec{B} = 2\hat{i} + 5\hat{j} + 2\hat{k}. \]
The magnitude of a vector \( \vec{B} = x\hat{i} + y\hat{j} + z\hat{k} \) is given by:
\[ |\vec{B}| = \sqrt{x^2 + y^2 + z^2}. \]
For \( \vec{B} = 2\hat{i} + 5\hat{j} + 2\hat{k} \):
\[ |\vec{B}| = \sqrt{2^2 + 5^2 + 2^2}. \]
Simplify the expression:
\[ |\vec{B}| = \sqrt{4 + 25 + 4} = \sqrt{33}. \]
The magnitude of vector \( \vec{B} \) is \( \sqrt{33} \).
Let one focus of the hyperbola $ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 $ be at $ (\sqrt{10}, 0) $, and the corresponding directrix be $ x = \frac{\sqrt{10}}{2} $. If $ e $ and $ l $ are the eccentricity and the latus rectum respectively, then $ 9(e^2 + l) $ is equal to:
The largest $ n \in \mathbb{N} $ such that $ 3^n $ divides 50! is: