If the function \(f(x)=\begin{cases}(1+|\cos x|) \frac{\lambda}{|\cos x|} & , 0 < x < \frac{\pi}{2} \\\mu & , \quad x=\frac{\pi}{2} \\\frac{\cot 6 x}{e^{\cot 4 x}} & \frac{\pi}{2}< x< \pi\end{cases}\)is continuous at \(x=\frac{\pi}{2}, then 9 \lambda+6 \log _{ e } \mu+\mu^6- e ^{6 \lambda}\) is equal to
To ensure continuity of \(f(x)\) at \(x=\frac{\pi}{2}\), the left-hand limit and the right-hand limit as \(x\) approaches \(\frac{\pi}{2}\) must both equal \(f\left(\frac{\pi}{2}\right)=\mu\).
1. Left-Hand Limit (\(x \to \frac{\pi}{2}^{-}\)):
\( \lim_{x \to \frac{\pi}{2}^{-}} (1 + |\cos x|)^{\frac{\lambda}{|\cos x|}} = \lim_{x \to \frac{\pi}{2}^{-}} (1 + \cos x)^{\frac{\lambda}{\cos x}} \)
As \(x \to \frac{\pi}{2}^{-}\), \(\cos x \to 0^{+}\), so:
\( (1 + \cos x)^{\frac{\lambda}{\cos x}} \approx e^{\lambda} \)
Thus,
\( \lim_{x \to \frac{\pi}{2}^{-}} f(x) = e^{\lambda} \)
2. Right-Hand Limit (\(x \to \frac{\pi}{2}^{+}\)):
\( \lim_{x \to \frac{\pi}{2}^{+}} e^{\frac{\cot 6x}{\cot 4x}} = e^{ \lim_{x \to \frac{\pi}{2}^{+}} \frac{\cot 6x}{\cot 4x} } \)
Simplify the exponent:
\( \frac{\cot 6x}{\cot 4x} = \frac{\frac{\cos 6x}{\sin 6x}}{\frac{\cos 4x}{\sin 4x}} = \frac{\cos 6x \cdot \sin 4x}{\cos 4x \cdot \sin 6x} \)
As \(x \to \frac{\pi}{2}^{+}\) :
\( 6x \to 3\pi \Rightarrow \cos 6x = \cos 3\pi = -1, \quad \sin 6x = \sin 3\pi = 0 \)
\( 4x \to 2\pi \Rightarrow \cos 4x = \cos 2\pi = 1, \quad \sin 4x = \sin 2\pi = 0 \)
Applying L'Hôpital's Rule to the indeterminate form:
\( \lim_{x \to \frac{\pi}{2}^{+}} \frac{\cot 6x}{\cot 4x} = \lim_{x \to \frac{\pi}{2}^{+}} \frac{- \csc^2 6x \cdot 6}{-\csc^2 4x \cdot 4} = \lim_{x \to \frac{\pi}{2}^{+}} \frac{6 \sin^2 4x}{4 \sin^2 6x} = \frac{6}{4} \cdot \left(\frac{\sin 4x}{\sin 6x} \right)^2 = \frac{3}{2} \cdot \left( \frac{2}{3} \right)^2 = \frac{3}{2} \cdot \frac{4}{9} = \frac{2}{3} \)
Therefore,
\( \lim_{x \to \frac{\pi}{2}^{+}} f(x) = e^{\frac{2}{3}} \)
3. Continuity Condition:
Thus,
\( e^{\lambda} = \mu = e^{\frac{2}{3}} \)
Thus, \(\lambda = \frac{2}{3}\), \(\mu = e^{\frac{2}{3}}\)
4. Evaluating the Expression:
\( 9\lambda + 6 \ln \mu + \mu^6 - e^{6\lambda} = 9 \left(\frac{2}{3}\right) + 6 \ln \left( e^{\frac{2}{3}} \right) + \left( e^{\frac{2}{3}} \right)^6 - e^{6 \cdot \frac{2}{3}} = 6 + 6 \cdot \frac{2}{3} + e^4 - e^4 = 6 + 4 + 0 = 10 \)
Thus, the correct answer is option (4).
Let \( y = f(x) \) be the solution of the differential equation
\[ \frac{dy}{dx} + 3y \tan^2 x + 3y = \sec^2 x \]
such that \( f(0) = \frac{e^3}{3} + 1 \), then \( f\left( \frac{\pi}{4} \right) \) is equal to:
Find the IUPAC name of the compound.
If \( \lim_{x \to 0} \left( \frac{\tan x}{x} \right)^{\frac{1}{x^2}} = p \), then \( 96 \ln p \) is: 32
A function is said to be continuous at a point x = a, if
limx→a
f(x) Exists, and
limx→a
f(x) = f(a)
It implies that if the left hand limit (L.H.L), right hand limit (R.H.L) and the value of the function at x=a exists and these parameters are equal to each other, then the function f is said to be continuous at x=a.
If the function is undefined or does not exist, then we say that the function is discontinuous.
Conditions for continuity of a function: For any function to be continuous, it must meet the following conditions: