If the function \(f(x)=\begin{cases}(1+|\cos x|) \frac{\lambda}{|\cos x|} & , 0 < x < \frac{\pi}{2} \\\mu & , \quad x=\frac{\pi}{2} \\\frac{\cot 6 x}{e^{\cot 4 x}} & \frac{\pi}{2}< x< \pi\end{cases}\)is continuous at \(x=\frac{\pi}{2}, then 9 \lambda+6 \log _{ e } \mu+\mu^6- e ^{6 \lambda}\) is equal to
To ensure continuity of \(f(x)\) at \(x=\frac{\pi}{2}\), the left-hand limit and the right-hand limit as \(x\) approaches \(\frac{\pi}{2}\) must both equal \(f\left(\frac{\pi}{2}\right)=\mu\).
1. Left-Hand Limit (\(x \to \frac{\pi}{2}^{-}\)):
\( \lim_{x \to \frac{\pi}{2}^{-}} (1 + |\cos x|)^{\frac{\lambda}{|\cos x|}} = \lim_{x \to \frac{\pi}{2}^{-}} (1 + \cos x)^{\frac{\lambda}{\cos x}} \)
As \(x \to \frac{\pi}{2}^{-}\), \(\cos x \to 0^{+}\), so:
\( (1 + \cos x)^{\frac{\lambda}{\cos x}} \approx e^{\lambda} \)
Thus,
\( \lim_{x \to \frac{\pi}{2}^{-}} f(x) = e^{\lambda} \)
2. Right-Hand Limit (\(x \to \frac{\pi}{2}^{+}\)):
\( \lim_{x \to \frac{\pi}{2}^{+}} e^{\frac{\cot 6x}{\cot 4x}} = e^{ \lim_{x \to \frac{\pi}{2}^{+}} \frac{\cot 6x}{\cot 4x} } \)
Simplify the exponent:
\( \frac{\cot 6x}{\cot 4x} = \frac{\frac{\cos 6x}{\sin 6x}}{\frac{\cos 4x}{\sin 4x}} = \frac{\cos 6x \cdot \sin 4x}{\cos 4x \cdot \sin 6x} \)
As \(x \to \frac{\pi}{2}^{+}\) :
\( 6x \to 3\pi \Rightarrow \cos 6x = \cos 3\pi = -1, \quad \sin 6x = \sin 3\pi = 0 \)
\( 4x \to 2\pi \Rightarrow \cos 4x = \cos 2\pi = 1, \quad \sin 4x = \sin 2\pi = 0 \)
Applying L'Hôpital's Rule to the indeterminate form:
\( \lim_{x \to \frac{\pi}{2}^{+}} \frac{\cot 6x}{\cot 4x} = \lim_{x \to \frac{\pi}{2}^{+}} \frac{- \csc^2 6x \cdot 6}{-\csc^2 4x \cdot 4} = \lim_{x \to \frac{\pi}{2}^{+}} \frac{6 \sin^2 4x}{4 \sin^2 6x} = \frac{6}{4} \cdot \left(\frac{\sin 4x}{\sin 6x} \right)^2 = \frac{3}{2} \cdot \left( \frac{2}{3} \right)^2 = \frac{3}{2} \cdot \frac{4}{9} = \frac{2}{3} \)
Therefore,
\( \lim_{x \to \frac{\pi}{2}^{+}} f(x) = e^{\frac{2}{3}} \)
3. Continuity Condition:
Thus,
\( e^{\lambda} = \mu = e^{\frac{2}{3}} \)
Thus, \(\lambda = \frac{2}{3}\), \(\mu = e^{\frac{2}{3}}\)
4. Evaluating the Expression:
\( 9\lambda + 6 \ln \mu + \mu^6 - e^{6\lambda} = 9 \left(\frac{2}{3}\right) + 6 \ln \left( e^{\frac{2}{3}} \right) + \left( e^{\frac{2}{3}} \right)^6 - e^{6 \cdot \frac{2}{3}} = 6 + 6 \cdot \frac{2}{3} + e^4 - e^4 = 6 + 4 + 0 = 10 \)
Thus, the correct answer is option (4).
Let 
be a continuous function at $x=0$, then the value of $(a^2+b^2)$ is (where $[\ ]$ denotes greatest integer function).
Let 
be a continuous function at $x=0$, then the value of $(a^2+b^2)$ is (where $[\ ]$ denotes greatest integer function).
Let $ f(x) = \begin{cases} (1+ax)^{1/x} & , x<0 \\1+b & , x = 0 \\\frac{(x+4)^{1/2} - 2}{(x+c)^{1/3} - 2} & , x>0 \end{cases} $ be continuous at x = 0. Then $ e^a bc $ is equal to
In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 
Two circular discs of radius \(10\) cm each are joined at their centres by a rod, as shown in the figure. The length of the rod is \(30\) cm and its mass is \(600\) g. The mass of each disc is also \(600\) g. If the applied torque between the two discs is \(43\times10^{-7}\) dyne·cm, then the angular acceleration of the system about the given axis \(AB\) is ________ rad s\(^{-2}\).

A function is said to be continuous at a point x = a, if
limx→a
f(x) Exists, and
limx→a
f(x) = f(a)
It implies that if the left hand limit (L.H.L), right hand limit (R.H.L) and the value of the function at x=a exists and these parameters are equal to each other, then the function f is said to be continuous at x=a.
If the function is undefined or does not exist, then we say that the function is discontinuous.
Conditions for continuity of a function: For any function to be continuous, it must meet the following conditions: