>
CBSE CLASS XII
List of top Questions asked in CBSE CLASS XII
Find the particular solution of the differential equation \( \frac{dy}{dx} = y \cot 2x \), given that \( y\left(\frac{\pi}{4}\right) = 2 \).
CBSE CLASS XII - 2024
CBSE CLASS XII
Mathematics
Differential equations
Given that \( x^y + y^x = a^b \), where \( a \) and \( b \) are positive constants, find \( \frac{dy}{dx} \).
CBSE CLASS XII - 2024
CBSE CLASS XII
Mathematics
Differentiation
Evaluate:
\[ I = \int_{-\frac{1}{2}}^{\frac{1}{2}} \cos x \cdot \log \left( \frac{1 - x}{1 + x} \right) dx \]
CBSE CLASS XII - 2024
CBSE CLASS XII
Mathematics
Integration
If \( x^y = e^{x-y} \), prove that
\(\frac{dy}{dx} = \frac{\log x}{(1 + \log x)^{2}}\)
.
CBSE CLASS XII - 2024
CBSE CLASS XII
Mathematics
Logarithmic Differentiation
If \( y = \cos^3(\sec^2 2t) \), find \( \frac{dy}{dt} \).
CBSE CLASS XII - 2024
CBSE CLASS XII
Mathematics
Differentiation
Show that \( f(x) = \frac{4 \sin x}{2 + \cos x} - x \) is an increasing function of \( x \) in \( \left[ 0, \frac{\pi}{2} \right] \).
CBSE CLASS XII - 2024
CBSE CLASS XII
Mathematics
Differentiation
Find the principal value of \( \tan^{-1}(1) + \cos^{-1}\left(-\frac{1}{2}\right) + \sin^{-1}\left(-\frac{1}{\sqrt{2}}\right) \).
CBSE CLASS XII - 2024
CBSE CLASS XII
Mathematics
Trigonometric Identities
Express \( \tan^{-1} \left( \frac{\cos x}{1 - \sin x} \right) \), where \( -\frac{\pi}{2}<x<\frac{\pi}{2} \), in the simplest form.
CBSE CLASS XII - 2024
CBSE CLASS XII
Mathematics
Trigonometric Identities
The volume of a cube is increasing at the rate of \( 6 \, \text{cm}^3/\text{s} \). How fast is the surface area of the cube increasing, when the length of an edge is \( 8 \, \text{cm} \)?
CBSE CLASS XII - 2024
CBSE CLASS XII
Mathematics
Mensuration
Assertion (A):
The relation \( R = \{(x, y) : (x + y) \text{ is a prime number and } x, y \in \mathbb{N}\} \) is not a reflexive relation.
Reason (R):
The number \( 2n \) is composite for all natural numbers \( n \).
CBSE CLASS XII - 2024
CBSE CLASS XII
Mathematics
Relations
Assertion (A):
The corner points of the bounded feasible region of a L.P.P. are shown below. The maximum value of \( Z = x + 2y \) occurs at infinite points.
Reason (R):
The optimal solution of a LPP having bounded feasible region must occur at corner points.
CBSE CLASS XII - 2024
CBSE CLASS XII
Mathematics
Linear Programming
The function \( f(x) = kx - \sin x \) is strictly increasing for:
CBSE CLASS XII - 2024
CBSE CLASS XII
Mathematics
Calculus
If \( \vec{a} \) and \( \vec{b} \) are two vectors such that \( |\vec{a}| = 1 \), \( |\vec{b}| = 2 \), and \( \vec{a} \cdot \vec{b} = \sqrt{3} \), then the angle between \( 2\vec{a} \) and \( -\vec{b} \) is:
CBSE CLASS XII - 2024
CBSE CLASS XII
Mathematics
Vectors
Let \( \vec{a} \) be any vector such that \( |\vec{a}| = a \). The value of \( |\vec{a} \times \hat{i}|^2 + |\vec{a} \times \hat{j}|^2 + |\vec{a} \times \hat{k}|^2 \) is:
CBSE CLASS XII - 2024
CBSE CLASS XII
Mathematics
Vectors
The vectors \( \vec{a} = 2\hat{i} - \hat{j} + \hat{k} \), \( \vec{b} = \hat{i} - 3\hat{j} - 5\hat{k} \), and \( \vec{c} = -3\hat{i} + 4\hat{j} + 4\hat{k} \) represent the sides of:
CBSE CLASS XII - 2024
CBSE CLASS XII
Mathematics
Vectors
A vector perpendicular to the line \( \vec{r} = \hat{i} + \hat{j} - \hat{k} + \lambda (3\hat{i} - \hat{j}) \) is:
CBSE CLASS XII - 2024
CBSE CLASS XII
Mathematics
Vectors
The integrating factor of the differential equation \( (x + 2y^2) \frac{dy}{dx} = y \, (y>0) \) is:}
CBSE CLASS XII - 2024
CBSE CLASS XII
Mathematics
Differential equations
Given that
\(( A)^{-1} = \frac{1}{7}\)
\( \begin{bmatrix} 2 & 1 \\ -3 & 2 \end{bmatrix}\)
, matrix \( A \) is:
CBSE CLASS XII - 2024
CBSE CLASS XII
Mathematics
Matrices
If
\(A = \begin{bmatrix} 2 & 1 \\ -4 & -2 \end{bmatrix}\)
, then the value of \( I - A + A^2 - A^3 + \ldots \) is:
CBSE CLASS XII - 2024
CBSE CLASS XII
Mathematics
Matrices
If
\(\begin{bmatrix} a & c & 0 \\ b & d & 0 \\ 0 & 0 & 5 \end{bmatrix}\)
is a scalar matrix, then the value of \( a + 2b + 3c + 4d \) is:
CBSE CLASS XII - 2024
CBSE CLASS XII
Mathematics
Matrices
The number of arbitrary constants in the particular solution of the differential equation
\[ \log \left( \frac{dy}{dx} \right) = 3x + 4y; \quad y(0) = 0 \]
is/are:
CBSE CLASS XII - 2024
CBSE CLASS XII
Mathematics
Differential equations
The value of \( \int_{-1}^1 |x| \, dx \) is:
CBSE CLASS XII - 2024
CBSE CLASS XII
Mathematics
Integration
The value of constant \( c \) that makes the function \( f \) defined by
\(f(x) = \ x^2 - c^2\)
,
\(\&\ \text{if } x<4\)
\(cx + 20, \&\ \text{if } x \geq 4\)
continuous for all real numbers is:
CBSE CLASS XII - 2024
CBSE CLASS XII
Mathematics
Continuity
If \( e^{x^2y} = c \), then \( \frac{dy}{dx} \) is:
CBSE CLASS XII - 2024
CBSE CLASS XII
Mathematics
Differentiation
If
\(A = \begin{bmatrix} 1 & 3 \\ 3 & 4 \end{bmatrix}\)
and \( A^2 - kA - 5I = 0 \), then the value of \( k \) is:
CBSE CLASS XII - 2024
CBSE CLASS XII
Mathematics
Matrices
Prev
1
...
337
338
339
340
341
...
513
Next