Question:

The vectors \( \vec{a} = 2\hat{i} - \hat{j} + \hat{k} \), \( \vec{b} = \hat{i} - 3\hat{j} - 5\hat{k} \), and \( \vec{c} = -3\hat{i} + 4\hat{j} + 4\hat{k} \) represent the sides of:

Show Hint

Use dot products to identify right angles in vector triangles.
  • an equilateral triangle
  • an obtuse-angled triangle
  • an isosceles triangle
  • a right-angled triangle
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is D

Solution and Explanation

Step 1: {Find the magnitudes of the vectors}
Compute the magnitudes: \[ |\vec{a}| = \sqrt{2^2 + (-1)^2 + 1^2} = \sqrt{6}, \,\] \[|\vec{b}| = \sqrt{1^2 + (-3)^2 + (-5)^2} = \sqrt{35}, \,\]\[ |\vec{c}| = \sqrt{(-3)^2 + 4^2 + 4^2} = \sqrt{41}. \] Step 2: {Check for right angle using dot products}
Calculate \( \vec{a} \cdot \vec{b} \), \( \vec{b} \cdot \vec{c} \), and \( \vec{c} \cdot \vec{a} \). If one is zero, the triangle is right-angled. For example: \[ \vec{a} \cdot \vec{c} = (2)(-3) + (-1)(4) + (1)(4) = -6 - 4 + 4 = 0. \] Step 3: {Conclude the type of triangle}
Since \( \vec{a} \cdot \vec{c} = 0 \), the triangle is right-angled.
Was this answer helpful?
0
0