Step 1: {Find the angle between \( \vec{a} \) and \( \vec{b} \)}
The dot product formula gives: \[ \vec{a} \cdot \vec{b} = |\vec{a}||\vec{b}|\cos\theta \implies \sqrt{3} = (1)(2)\cos\theta \implies \cos\theta = \frac{\sqrt{3}}{2}. \] Thus, \( \theta = \frac{\pi}{6} \).
Step 2: {Angle between \( 2\vec{a} \) and \( -\vec{b} \)}
Since \( 2\vec{a} \) and \( -\vec{b} \) involve a scalar multiplication, the angle becomes: \[ \pi - \frac{\pi}{6} = \frac{5\pi}{6}. \]
Step 3: {Verify the options}
The correct angle is \( \frac{5\pi}{6} \), matching option (C).
Show that the line passing through the points A $(0, -1, -1)$ and B $(4, 5, 1)$ intersects the line joining points C $(3, 9, 4)$ and D $(-4, 4, 4)$.