Step 1: Splitting the integral. The absolute value function \( |x| \) is defined as Splitting the integral at \( x = 0 \): \[ \int_{-1}^1 |x| \, dx = \int_{-1}^0 -x \, dx + \int_0^1 x \, dx \] Step 2: Evaluating the integrals. \[ \int_{-1}^0 -x \, dx = \left[ -\frac{x^2}{2} \right]_{-1}^0 = 0 - \left(-\frac{(-1)^2}{2}\right) = \frac{1}{2} \] \[ \int_0^1 x \, dx = \left[ \frac{x^2}{2} \right]_0^1 = \frac{1^2}{2} - 0 = \frac{1}{2} \] Step 3: Summing the results. \[ \int_{-1}^1 |x| \, dx = \frac{1}{2} + \frac{1}{2} = 1 \] Conclusion: Thus, the value of the integral is \( 1 \), which corresponds to option \( \mathbf{(C)} \).
Balance Sheet of Madhavan, Chatterjee and Pillai as at 31st March, 2024
| Liabilities | Amount (₹) | Assets | Amount (₹) |
|---|---|---|---|
| Creditors | 1,10,000 | Cash at Bank | 4,05,000 |
| Outstanding Expenses | 17,000 | Stock | 2,20,000 |
| Mrs. Madhavan’s Loan | 2,00,000 | Debtors | 95,000 |
| Chatterjee’s Loan | 1,70,000 | Less: Provision for Doubtful Debts | (5,000) |
| Capitals: | Madhavan – 2,00,000 | Land and Building | 1,82,000 |
| Chatterjee – 1,00,000 | Plant and Machinery | 1,00,000 | |
| Pillai – 2,00,000 | |||
| Total | 9,97,000 | Total | 9,97,000 |

