Question:

Let \( \vec{a} \) be any vector such that \( |\vec{a}| = a \). The value of \( |\vec{a} \times \hat{i}|^2 + |\vec{a} \times \hat{j}|^2 + |\vec{a} \times \hat{k}|^2 \) is:

Show Hint

Cross product magnitudes depend on sine of the angle between vectors.
  • \( a^2 \)
  • \( 2a^2 \)
  • \( 3a^2 \)
  • \( 0 \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

Step 1: {Recall the formula for cross product magnitudes}
The magnitude of the cross product is: \[ |\vec{a} \times \hat{i}| = |\vec{a}||\hat{i}|\sin\theta. \] Step 2: {Evaluate each term}
For \( \vec{a} \times \hat{i} \), \( \vec{a} \times \hat{j} \), and \( \vec{a} \times \hat{k} \), the contributions along two directions add up, giving: \[ |\vec{a} \times \hat{i}|^2 + |\vec{a} \times \hat{j}|^2 + |\vec{a} \times \hat{k}|^2 = 2a^2. \] Step 3: {Verify the options}
The correct result is \( 2a^2 \), matching option (B).
Was this answer helpful?
0
0