Step 1: Separating the Variables Rewriting the equation: \[ \frac{1}{y} \, dy = \cot 2x \, dx \]
Step 2: Integrating Both Sides Integrate both sides: \[ \int \frac{1}{y} \, dy = \int \cot 2x \, dx \] The left-hand side becomes: \[ \log |y| \] The right-hand side uses the integral of \( \cot 2x \): \[ \int \cot 2x \, dx = \frac{1}{2} \log |\sin 2x| \] So the equation becomes: \[ \log |y| = \frac{1}{2} \log |\sin 2x| + \log c \] Here, \( \log c \) is the constant of integration.
Step 3: Simplify the Expression} Combine the logarithms: \[ \log |y| = \log \left( c \sqrt{\sin 2x} \right) \] Exponentiate both sides to remove the logarithm: \[ y = c \sqrt{\sin 2x} \]
Step 4: Finding the Particular Solution} We are given the condition \( y\left( \frac{\pi}{4} \right) = 2 \). Substitute \( x = \frac{\pi}{4} \) and \( y = 2 \) into the solution: \[ 2 = c \sqrt{\sin\left( 2 \cdot \frac{\pi}{4} \right)} \] Simplify: \[ 2 = c \sqrt{\sin\left( \frac{\pi}{2} \right)} \] Since \( \sin\left( \frac{\pi}{2} \right) = 1 \), we have: \[ 2 = c \cdot 1 \quad \Rightarrow \quad c = 2 \]
Step 5: Final Solution} Substitute \( c = 2 \) back into the solution: \[ y = 2 \sqrt{\sin 2x} \]
Final Answer: \[ \boxed{y = 2 \sqrt{\sin 2x}} \] This is the required particular solution to the given differential equation.
Fit a straight-line trend by the method of least squares for the following data:
\[ \begin{array}{|c|c|c|c|c|c|c|c|} \hline \textbf{Year} & 2004 & 2005 & 2006 & 2007 & 2008 & 2009 & 2010 \\ \hline \textbf{Profit (₹ 000)} & 114 & 130 & 126 & 144 & 138 & 156 & 164 \\ \hline \end{array} \]When observed over a long period of time, a time series data can predict trends that can forecast increase, decrease, or stagnation of a variable under consideration. The table below shows the sale of an item in a district during 1996–2001:
\[ \begin{array}{|c|c|c|c|c|c|c|} \hline \textbf{Year} & 1996 & 1997 & 1998 & 1999 & 2000 & 2001 \\ \hline \textbf{Sales (in lakh ₹)} & 6.5 & 5.3 & 4.3 & 6.1 & 5.6 & 7.8 \\ \hline \end{array} \]