Step 1: Let \( f(x) = \cos x \cdot \log \left( \frac{1 - x}{1 + x} \right) \).
To evaluate the integral, observe the function \( f(x) \). For \( f(-x) \):
\[
f(-x) = \cos(-x) \cdot \log \left( \frac{1 - (-x)}{1 + (-x)} \right)
\]
\[
= \cos x \cdot \log \left( \frac{1 + x}{1 - x} \right)
\]
\[
= -\cos x \cdot \log \left( \frac{1 - x}{1 + x} \right)
\]
\[
f(-x) = -f(x) \quad \text{(odd function)}.
\]
Step 2: Property of definite integrals for odd functions.
For any odd function \( f(x) \), the integral over a symmetric interval \( [-a, a] \) is zero:
\[
\int_{-a}^a f(x) dx = 0.
\]
Here, since \( f(x) = \cos x \cdot \log \left( \frac{1 - x}{1 + x} \right) \) is odd, we have:
\[
I = \int_{-\frac{1}{2}}^{\frac{1}{2}} \cos x \cdot \log \left( \frac{1 - x}{1 + x} \right) dx = 0.
\]
Conclusion:
The value of the integral is:
\[
I = 0.
\]