Question:

Evaluate: \[ I = \int_{-\frac{1}{2}}^{\frac{1}{2}} \cos x \cdot \log \left( \frac{1 - x}{1 + x} \right) dx \]

Show Hint

To simplify definite integrals, check whether the integrand is an odd or even function. Integrals of odd functions over symmetric intervals are always zero.
Hide Solution
collegedunia
Verified By Collegedunia

Solution and Explanation

Step 1: Let \( f(x) = \cos x \cdot \log \left( \frac{1 - x}{1 + x} \right) \). To evaluate the integral, observe the function \( f(x) \). For \( f(-x) \): \[ f(-x) = \cos(-x) \cdot \log \left( \frac{1 - (-x)}{1 + (-x)} \right) \] \[ = \cos x \cdot \log \left( \frac{1 + x}{1 - x} \right) \] \[ = -\cos x \cdot \log \left( \frac{1 - x}{1 + x} \right) \] \[ f(-x) = -f(x) \quad \text{(odd function)}. \] Step 2: Property of definite integrals for odd functions. For any odd function \( f(x) \), the integral over a symmetric interval \( [-a, a] \) is zero: \[ \int_{-a}^a f(x) dx = 0. \] Here, since \( f(x) = \cos x \cdot \log \left( \frac{1 - x}{1 + x} \right) \) is odd, we have: \[ I = \int_{-\frac{1}{2}}^{\frac{1}{2}} \cos x \cdot \log \left( \frac{1 - x}{1 + x} \right) dx = 0. \] Conclusion: The value of the integral is: \[ I = 0. \]
Was this answer helpful?
0
0