Step 1: Understanding the direction vector of the line.
The given line can be expressed as:
\[
\vec{r} = \hat{i} + \hat{j} - \hat{k} + \lambda (3\hat{i} - \hat{j})
\]
Here, the direction vector of the line is:
\[
\vec{d} = 3\hat{i} - \hat{j}
\]
Step 2: Condition for perpendicularity.
A vector \( \vec{v} \) is perpendicular to \( \vec{d} \) if their dot product is zero:
\[
\vec{v} \cdot \vec{d} = 0
\]
Let \( \vec{v} = a\hat{i} + b\hat{j} + c\hat{k} \). The dot product is:
\[
\vec{v} \cdot \vec{d} = (a\hat{i} + b\hat{j} + c\hat{k}) \cdot (3\hat{i} - \hat{j}) = 3a - b
\]
For perpendicularity:
\[
3a - b = 0 \quad \Rightarrow \quad b = 3a \quad \cdots (1)
\]
Step 3: Using the options to find the correct vector.
We substitute the options to check which satisfies \( b = 3a \):
\begin{itemize}
\item For \( \hat{i} + 3\hat{j} + 5\hat{k} \) (Option \( B \)):
\[
a = 1, \, b = 3, \, c = 5
\]
Substituting into \( b = 3a \):
\[
b = 3 \times 1 = 3 \quad \text{(True)}
\]
Therefore, this vector satisfies the condition.
\item Other options do not satisfy \( b = 3a \).
\end{itemize}
Conclusion:
Thus, the required vector is \( \hat{i} + 3\hat{j} + 5\hat{k} \), which corresponds to option \( \mathbf{(B)} \).