Step 1: Understanding the direction vector of the line. The given line can be expressed as: \[ \vec{r} = \hat{i} + \hat{j} - \hat{k} + \lambda (3\hat{i} - \hat{j}) \] Here, the direction vector of the line is: \[ \vec{d} = 3\hat{i} - \hat{j} \]
Step 2: Condition for perpendicularity. A vector \( \vec{v} \) is perpendicular to \( \vec{d} \) if their dot product is zero: \[ \vec{v} \cdot \vec{d} = 0 \] Let \( \vec{v} = a\hat{i} + b\hat{j} + c\hat{k} \). The dot product is: \[ \vec{v} \cdot \vec{d} = (a\hat{i} + b\hat{j} + c\hat{k}) \cdot (3\hat{i} - \hat{j}) = 3a - b \] For perpendicularity: \[ 3a - b = 0 \quad \Rightarrow \quad b = 3a \quad \cdots (1) \]
Step 3: Using the options to find the correct vector. We substitute the options to check which satisfies \( b = 3a \): For \( \hat{i} + 3\hat{j} + 5\hat{k} \)
(Option \( B \)): \[ a = 1, \, b = 3, \, c = 5 \] Substituting into \( b = 3a \): \[ b = 3 \times 1 = 3 \quad \text{(True)} \] Therefore, this vector satisfies the condition.
Other options do not satisfy \( b = 3a \).
Conclusion: Thus, the required vector is \( \hat{i} + 3\hat{j} + 5\hat{k} \), which corresponds to option \( \mathbf{(B)} \).
Show that the line passing through the points A $(0, -1, -1)$ and B $(4, 5, 1)$ intersects the line joining points C $(3, 9, 4)$ and D $(-4, 4, 4)$.