Question:

If \(A = \begin{bmatrix} 2 & 1 \\ -4 & -2 \end{bmatrix}\), then the value of \( I - A + A^2 - A^3 + \ldots \) is: 
 

Show Hint

For infinite geometric series \( I - A + A^2 - A^3 + \ldots \), check if \( A^2 = 0 \).
  • \(\begin{bmatrix} -1 & -1 \\ 4 & 3 \end{bmatrix}\)

  • \(\begin{bmatrix} 3 & 1 \\ -4 & -1 \end{bmatrix}\)
     

  • \(\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}\)
     

  • \(\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}\)
     

Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

Step 1: Understand the series \( S \): The given series is \( S = I - A + A^2 - A^3 + \cdots \), which is an infinite series. It can be expressed as: \[ S = (I - A)^{-1} \] if the matrix \( (I - A) \) is invertible. 

Step 2: Compute \( I - A \): The identity matrix \( I \) is: \(I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}\)

So,  \(I - A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} - \begin{bmatrix} 2 & 1 \\ -4 & -2 \end{bmatrix} = \begin{bmatrix} -1 & -1 \\ 4 & 3 \end{bmatrix}\) . 

Step 3: Check if \( I - A \) is invertible: The determinant of \( I - A \) is: \[ \text{det}(I - A) = (-1)(3) - (-1)(4) = -3 + 4 = 1 \neq 0 \] 
Since the determinant is non-zero, \( I - A \) is invertible.

 Step 4: Verify the series sum: The inverse of \( I - A \) is: 

\[(I - A)^{-1} = \begin{bmatrix} -1 & -1 \\ 4 & 3 \end{bmatrix}\]

Thus, the sum of the series \( S = I - A + A^2 - A^3 + \cdots \) is: 

\[S = \begin{bmatrix} -1 & -1 \\ 4 & 3 \end{bmatrix}\]

Conclusion: The correct option is  \(\mathbf{(A)} \begin{bmatrix} -1 & -1 \\ 4 & 3 \end{bmatrix} .\)

Was this answer helpful?
0
0