\(\begin{bmatrix} -1 & -1 \\ 4 & 3 \end{bmatrix}\)
\(\begin{bmatrix} 3 & 1 \\ -4 & -1 \end{bmatrix}\)
\(\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}\)
\(\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}\)
Step 1: Understand the series \( S \): The given series is \( S = I - A + A^2 - A^3 + \cdots \), which is an infinite series. It can be expressed as: \[ S = (I - A)^{-1} \] if the matrix \( (I - A) \) is invertible.
Step 2: Compute \( I - A \): The identity matrix \( I \) is: \(I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}\)
So, \(I - A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} - \begin{bmatrix} 2 & 1 \\ -4 & -2 \end{bmatrix} = \begin{bmatrix} -1 & -1 \\ 4 & 3 \end{bmatrix}\) .
Step 3: Check if \( I - A \) is invertible: The determinant of \( I - A \) is: \[ \text{det}(I - A) = (-1)(3) - (-1)(4) = -3 + 4 = 1 \neq 0 \]
Since the determinant is non-zero, \( I - A \) is invertible.
Step 4: Verify the series sum: The inverse of \( I - A \) is:
\[(I - A)^{-1} = \begin{bmatrix} -1 & -1 \\ 4 & 3 \end{bmatrix}\]Thus, the sum of the series \( S = I - A + A^2 - A^3 + \cdots \) is:
\[S = \begin{bmatrix} -1 & -1 \\ 4 & 3 \end{bmatrix}\]Conclusion: The correct option is \(\mathbf{(A)} \begin{bmatrix} -1 & -1 \\ 4 & 3 \end{bmatrix} .\)
Let $A = \begin{bmatrix} \cos \theta & 0 & -\sin \theta \\ 0 & 1 & 0 \\ \sin \theta & 0 & \cos \theta \end{bmatrix}$. If for some $\theta \in (0, \pi)$, $A^2 = A^T$, then the sum of the diagonal elements of the matrix $(A + I)^3 + (A - I)^3 - 6A$ is equal to
Let $ A $ be a $ 3 \times 3 $ matrix such that $ | \text{adj} (\text{adj} A) | = 81.
$ If $ S = \left\{ n \in \mathbb{Z}: \left| \text{adj} (\text{adj} A) \right|^{\frac{(n - 1)^2}{2}} = |A|^{(3n^2 - 5n - 4)} \right\}, $ then the value of $ \sum_{n \in S} |A| (n^2 + n) $ is:
The correct IUPAC name of \([ \text{Pt}(\text{NH}_3)_2\text{Cl}_2 ]^{2+} \) is: