\(7 \begin{bmatrix} 2 & -1 \\ 3 & 2 \end{bmatrix}\)
\(\begin{bmatrix} 2 & -1 \\ 3 & 2 \end{bmatrix}\)
\(\frac{1}{7} \begin{bmatrix} 2 & -1 \\ 3 & 2 \end{bmatrix}\)
\(\frac{1}{49} \begin{bmatrix} 2 & -1 \\ 3 & 2 \end{bmatrix}\)
Step 1: {Matrix inversion property}
If \( A^{-1} \) is given, the original matrix \( A \) is the reciprocal of the scalar multiple.
Step 2: {Calculate \( A \)}
Given \( A^{-1} = \frac{1}{7} \begin{bmatrix} 2 & 1 \\ -3 & 2 \end{bmatrix}\) , we compute \( A \) by multiplying the inverse by \( 7 \), so:\( A = 7 \times A^{-1} = 7 \cdot \frac{1}{7} \begin{bmatrix} 2 & 1\\ -3 & 2 \end{bmatrix} = \begin{bmatrix} 2 & -1 \\ 3 & 2 \end{bmatrix}. \)
Step 3: {Verify the options}
The correct matrix is option (B).