Question:

Assertion (A): The corner points of the bounded feasible region of a L.P.P. are shown below. The maximum value of \( Z = x + 2y \) occurs at infinite points. 
Reason (R): The optimal solution of a LPP having bounded feasible region must occur at corner points. 
The corner points

Show Hint

In linear programming, always check if the objective function is constant along any edge of the feasible region.
  • Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of Assertion (A).
  • Both Assertion (A) and Reason (R) are true and Reason (R) is not the correct explanation of Assertion (A).
  • Assertion (A) is true, but Reason (R) is false.
  • Assertion (A) is false, but Reason (R) is true.
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

Step 1: {Analyze Assertion (A)}
From the graph, the line \( Z = x + 2y \) passes through two corner points \( (60, 0) \) and \( (120, 60) \), providing the same maximum value. This indicates that the maximum value occurs at infinite points along this segment. Thus, Assertion (A) is true. 

Step 2: {Analyze Reason (R)}
In general, the optimal solution of an LPP occurs at corner points of the feasible region. This is true; however, in this case, the solution lies along a line segment connecting two corner points. Thus, Reason (R) is not the correct explanation of Assertion (A). 

Step 3: {Conclusion}
Both Assertion (A) and Reason (R) are true, but Reason (R) does not explain Assertion (A). Hence, the correct answer is option (B). 
 

Was this answer helpful?
0
0

Notes on Linear Programming Problem and its Mathematical Formulation