Step 1: {Analyze Assertion (A)}
From the graph, the line \( Z = x + 2y \) passes through two corner points \( (60, 0) \) and \( (120, 60) \), providing the same maximum value. This indicates that the maximum value occurs at infinite points along this segment. Thus, Assertion (A) is true.
Step 2: {Analyze Reason (R)}
In general, the optimal solution of an LPP occurs at corner points of the feasible region. This is true; however, in this case, the solution lies along a line segment connecting two corner points. Thus, Reason (R) is not the correct explanation of Assertion (A).
Step 3: {Conclusion}
Both Assertion (A) and Reason (R) are true, but Reason (R) does not explain Assertion (A). Hence, the correct answer is option (B).
An instructor at the astronomical centre shows three among the brightest stars in a particular constellation. Assume that the telescope is located at \( O(0,0,0) \) and the three stars have their locations at points \( D, A, \) and \( V \), having position vectors: \[ 2\hat{i} + 3\hat{j} + 4\hat{k}, \quad 7\hat{i} + 5\hat{j} + 8\hat{k}, \quad -3\hat{i} + 7\hat{j} + 11\hat{k} \] respectively. Based on the above information, answer the following questions: