Classify the following numbers as rational or irrational:
(i) \(2 - \sqrt5\)
(ii) \((3 + \sqrt23) - \sqrt23\)
(iii) \(\frac{2 \sqrt{7}} { 7 \sqrt7}\)
(iv) \(\frac{1}{\sqrt{2}}\)
(v) 2π
Classify the following numbers as rational or irrational :
(i) \(\sqrt23 \)
(ii) \(\sqrt225 \)
(iii) 0.3796
(iv) 7.478478...
(v) 1.101001000100001...
Look at several examples of rational numbers in the form \(\frac{p}{q}\) (q ≠ 0), where p and q are integers with no common factors other than 1 and having terminating decimal representations (expansions). Can you guess what property q must satisfy?
You know that \(\frac{1}{7}\) = 0142857_ . . Can you predict what the decimal expansions of \(\frac{2}{7},\frac{3}{7},\frac{4}{7},\frac{5}{7},\frac{6}{7}\) are, without actually doing the long division? If so, how? [Hint : Study the remainders while finding the value of 1/7 carefully.]
State whether the following statements are true or false. Justify your answers.
(i) Every irrational number is a real number.
(ii) Every point on the number line is of the form √m , where m is a natural number.
(iii) Every real number is an irrational number
State whether the following statements are true or false. Give reasons for your answers.
(i) Every natural number is a whole number.
(ii) Every integer is a whole number.
(iii) Every rational number is a whole number