State whether the following statements are true or false. Give reasons for your answers.
(i) Every natural number is a whole number.
(ii) Every integer is a whole number.
(iii) Every rational number is a whole number
(i) True; since the collection of whole numbers contains all natural numbers.
(ii) False; as integers may be negative but whole numbers are positive. For example: −3 is an integer but not a whole number.
(iii) False; as rational numbers may be fractional but whole numbers may not be. 
For example: \(\frac{1}{5}\) is a rational number but not a whole number.
The largest $ n \in \mathbb{N} $ such that $ 3^n $ divides 50! is:
(i) The kind of person the doctor is (money, possessions)
(ii) The kind of person he wants to be (appearance, ambition)
∆ABC is an isosceles triangle in which AB = AC. Side BA is produced to D such that AD = AB (see Fig. 7.34). Show that ∠ BCD is a right angle.
