State whether the following statements are true or false. Give reasons for your answers.
(i) Every natural number is a whole number.
(ii) Every integer is a whole number.
(iii) Every rational number is a whole number
(i) True; since the collection of whole numbers contains all natural numbers.
(ii) False; as integers may be negative but whole numbers are positive. For example: −3 is an integer but not a whole number.
(iii) False; as rational numbers may be fractional but whole numbers may not be.
For example: \(\frac{1}{5}\) is a rational number but not a whole number.
Directions: In Question Numbers 19 and 20, a statement of Assertion (A) is followed by a statement of Reason (R).
Choose the correct option from the following:
(A) Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of Assertion (A).
(B) Both Assertion (A) and Reason (R) are true, but Reason (R) is not the correct explanation of Assertion (A).
(C) Assertion (A) is true, but Reason (R) is false.
(D) Assertion (A) is false, but Reason (R) is true.
Assertion (A): For any two prime numbers $p$ and $q$, their HCF is 1 and LCM is $p + q$.
Reason (R): For any two natural numbers, HCF × LCM = product of numbers.
(Street Plan) : A city has two main roads which cross each other at the centre of the city. These two roads are along the North-South direction and East-West direction.
All the other streets of the city run parallel to these roads and are 200 m apart. There are 5 streets in each direction. Using 1cm = 200 m, draw a model of the city on your notebook. Represent the roads/streets by single lines. There are many cross- streets in your model. A particular cross-street is made by two streets, one running in the North - South direction and another in the East - West direction. Each cross street is referred to in the following manner : If the 2nd street running in the North - South direction and 5th in the East - West direction meet at some crossing, then we will call this cross-street (2, 5). Using this convention, find:
(i) how many cross - streets can be referred to as (4, 3).
(ii) how many cross - streets can be referred to as (3, 4).