Let the radius of the sphere be r.
Surface area of sphere = 154
So, \(4\pi r^2 = 154\ cm^2 \)
r2 = \(\frac{154}{4\pi}\)
r2 = \(\left(\frac{154}{4}\right) \left(\frac{7}{22}\right)\)
r2 = \(\frac{\text{(154 × 7) }}{\text{ (4 × 22)}}\)
r2 = \((\frac{49}{4})\)
r = (\(\frac{7}{2}\)) = 3.5 cm
Therefore, the radius of the sphere whose surface area is 154 cm2 is 3.5 cm.
एक गोलाची त्रिज्या 7 सेमी असेल तर त्याचे वर्तुळ क्षेत्रफळ काय असेल?
(i) The kind of person the doctor is (money, possessions)
(ii) The kind of person he wants to be (appearance, ambition)
ABCD is a quadrilateral in which AD = BC and ∠ DAB = ∠ CBA (see Fig. 7.17). Prove that
(i) ∆ ABD ≅ ∆ BAC
(ii) BD = AC
(iii) ∠ ABD = ∠ BAC.
