You know that \(\frac{1}{7}\) = 0142857_ . . Can you predict what the decimal expansions of \(\frac{2}{7},\frac{3}{7},\frac{4}{7},\frac{5}{7},\frac{6}{7}\) are, without actually doing the long division? If so, how? [Hint : Study the remainders while finding the value of 1/7 carefully.]
It can be done follows:
\(\frac{2}{7}\) = 2 × \(\frac{1}{7}\) = 2 × 0.142857 = 0.285714 , where p and q are integers and q ≠ 0.
\(\frac{3}{7}\) = 3 × \(\frac{1}{7}\) = 3 × 0.142857 = 0.428571 = 10 x 6 + x
\(\frac{4}{7}\) = 4 × \(\frac{1}{7}\) = 4 × 0.142857 = 0.571428_= 9x = 6 = x = \(\frac{2}{3}\)
\(\frac{5}{7}\) = 5 × \(\frac{1}{7}\) = 5 × 0.142857 = 0.714285
\(\frac{6}{7}\) = 6 × \(\frac{1}{7}\) = 4 × 0.142857 = 0.857142
Write the following in decimal form and say what kind of decimal expansion each has :
(i) \(\frac{36}{100}\) (ii) \(\frac{1}{11}\) (iii) \(4\frac{1}{8}\)
(iv) \(\frac{3}{13}\) (v) \(\frac{2}{11}\) (vi) \(\frac{329}{400}\)
Express the following in the form \(\frac{p }{ q}\) , where p and q are integers and q ≠ 0.
(i) 0.6(ii) 0.47 (iii) 0.001.
Classify the following numbers as rational or irrational :
(i) \(\sqrt23 \)
(ii) \(\sqrt225 \)
(iii) 0.3796
(iv) 7.478478...
(v) 1.101001000100001...
When 3.0g of carbon is burnt in 8.00g oxygen, 11.00g of carbon dioxide is produced. What mass of carbon dioxide will be formed when 3.00g of carbon is burnt in 50.0g of oxygen? Which law of chemical combination will govern your answer?