(i) Radius of the cone, r = 7cm
Slant height of the cone, l = 25cm
Height of the cone, \(h = \sqrt{l² - r²}\)
\(= \sqrt{(25)² - (7)²}\)
\(= \sqrt{625 - 49}\)
\(= \sqrt{576}\)
h = 24 cm
Volume of cone =\( \frac{1}{3}\) \(\pi \)r²h
= \(\frac{1}{3}\) × \(\frac{22}{7}\) × 7 cm × 7 cm × 24 cm
= 1232 cm³
= 1232 × (\(\frac{1}{1000}\)L)
= 1.232 liters
(ii) Height of the cone, h = 7cm
Slant height of the cone, l = 13cm
Radius of the cone, \(r = \sqrt{l² - h²}\)
\(= \sqrt{(13)² - (12)²}\)
\(= \sqrt{169 -144}\)
\(= \sqrt{25}\)
r = 5 cm
Volume of the cone = \(\frac{1}{3}\)\(\pi\)r²h
= \(\frac{1}{3}\) × \(\frac{22}{7}\) × 5 cm × 5 cm × 12 cm
\(= \frac{2200}{7}\) cm³
\(= \frac{2200}{7} × \frac{1}{1000}\ L \)
\(=\frac{ 11}{35}\) litres
When 3.0g of carbon is burnt in 8.00g oxygen, 11.00g of carbon dioxide is produced. What mass of carbon dioxide will be formed when 3.00g of carbon is burnt in 50.0g of oxygen? Which law of chemical combination will govern your answer?