Classify the following numbers as rational or irrational :
(i) \(\sqrt23 \)
(ii) \(\sqrt225 \)
(iii) 0.3796
(iv) 7.478478...
(v) 1.101001000100001...
(i) \(\sqrt23\) = 4.79583152331.... As the decimal expansion of this number is non-terminating non-recurring, therefore, it is an irrational number.
(ii) \(\sqrt225\) = 15= \(\frac{15}{1}\)It is a rational number as it can be represented in \(\frac{p}{q}\) form.
(iii) 0.3796 As the decimal expansion of this number is terminating, therefore, it is a rational number.
(iv) 7.478478 … = \(\overline{7.478 }\) As the decimal expansion of this number is non-terminating recurring, therefore, it is a rational number.
(v) 1.10100100010000 … As the decimal expansion of this number is non-terminating non-repeating, therefore, it is an irrational number.
Express the following in the form \(\frac{p }{ q}\) , where p and q are integers and q ≠ 0.
(i) 0.6(ii) 0.47 (iii) 0.001.
Write the following in decimal form and say what kind of decimal expansion each has :
(i) \(\frac{36}{100}\) (ii) \(\frac{1}{11}\) (iii) \(4\frac{1}{8}\)
(iv) \(\frac{3}{13}\) (v) \(\frac{2}{11}\) (vi) \(\frac{329}{400}\)
A driver of a car travelling at \(52\) \(km \;h^{–1}\) applies the brakes Shade the area on the graph that represents the distance travelled by the car during the period.
Which part of the graph represents uniform motion of the car?