State whether the following statements are true or false. Justify your answers.
(i) Every irrational number is a real number.
(ii) Every point on the number line is of the form √m , where m is a natural number.
(iii) Every real number is an irrational number
(i) True; since the collection of real numbers is made up of rational and irrational numbers.
(ii) False; as negative numbers cannot be expressed as the square root of any other number.
(iii) False; as real numbers include both rational and irrational numbers. Therefore, every real number cannot be an irrational number.
Prove that $7\sqrt{5}$ is an irrational number.
 
Prove that $6\sqrt{3}$ is irrational.
 
(i) The kind of person the doctor is (money, possessions)
(ii) The kind of person he wants to be (appearance, ambition)
∆ABC is an isosceles triangle in which AB = AC. Side BA is produced to D such that AD = AB (see Fig. 7.34). Show that ∠ BCD is a right angle.
