There is no contradiction. When we measure a length with scale or any other instrument,
we only obtain an approximate rational value. We never obtain an exact value.
For this reason, we may not realise that either c or d is irrational.
Therefore, the \(\frac{ c}{d}\) fraction is irrational.
Hence, π is irrational.
For real number a, b (a > b > 0), let
\(\text{{Area}} \left\{ (x, y) : x^2 + y^2 \leq a^2 \text{{ and }} \frac{x^2}{a^2} + \frac{y^2}{b^2} \geq 1 \right\} = 30\pi\)
and
\(\text{{Area}} \left\{ (x, y) : x^2 + y^2 \geq b^2 \text{{ and }} \frac{x^2}{a^2} + \frac{y^2}{b^2} \leq 1 \right\} = 18\pi\)
Then the value of (a – b)2 is equal to _____.
In Fig. 9.26, A, B, C and D are four points on a circle. AC and BD intersect at a point E such that ∠ BEC = 130° and ∠ ECD = 20°. Find ∠ BAC.