Look at several examples of rational numbers in the form \(\frac{p}{q}\) (q ≠ 0), where p and q are integers with no common factors other than 1 and having terminating decimal representations (expansions). Can you guess what property q must satisfy?
Terminating decimal expansion will occur when denominator q of rational number \(\frac{p}{q}\) is either of 2, 4, 5, 8, 10, and so on…
\(\frac{9}{4}\) = 2.25
\(\frac{11}{8}\) = 1.375
\(\frac{27}{5}\) = 5.4
It can be observed that terminating decimal may be obtained in the situation where prime factorisation of the denominator of the given fractions has the power of 2 only or 5 only or both.
Write the following in decimal form and say what kind of decimal expansion each has :
(i) \(\frac{36}{100}\) (ii) \(\frac{1}{11}\) (iii) \(4\frac{1}{8}\)
(iv) \(\frac{3}{13}\) (v) \(\frac{2}{11}\) (vi) \(\frac{329}{400}\)
Express the following in the form \(\frac{p }{ q}\) , where p and q are integers and q ≠ 0.
(i) 0.6(ii) 0.47 (iii) 0.001.
Classify the following numbers as rational or irrational :
(i) \(\sqrt23 \)
(ii) \(\sqrt225 \)
(iii) 0.3796
(iv) 7.478478...
(v) 1.101001000100001...
When 3.0g of carbon is burnt in 8.00g oxygen, 11.00g of carbon dioxide is produced. What mass of carbon dioxide will be formed when 3.00g of carbon is burnt in 50.0g of oxygen? Which law of chemical combination will govern your answer?