Look at several examples of rational numbers in the form \(\frac{p}{q}\) (q ≠ 0), where p and q are integers with no common factors other than 1 and having terminating decimal representations (expansions). Can you guess what property q must satisfy?
Terminating decimal expansion will occur when denominator q of rational number \(\frac{p}{q}\) is either of 2, 4, 5, 8, 10, and so on…
\(\frac{9}{4}\) = 2.25
\(\frac{11}{8}\) = 1.375
\(\frac{27}{5}\) = 5.4
It can be observed that terminating decimal may be obtained in the situation where prime factorisation of the denominator of the given fractions has the power of 2 only or 5 only or both.
Write the following in decimal form and say what kind of decimal expansion each has :
(i) \(\frac{36}{100}\) (ii) \(\frac{1}{11}\) (iii) \(4\frac{1}{8}\)
(iv) \(\frac{3}{13}\) (v) \(\frac{2}{11}\) (vi) \(\frac{329}{400}\)
Express the following in the form \(\frac{p }{ q}\) , where p and q are integers and q ≠ 0.
(i) 0.6(ii) 0.47 (iii) 0.001.
Classify the following numbers as rational or irrational :
(i) \(\sqrt23 \)
(ii) \(\sqrt225 \)
(iii) 0.3796
(iv) 7.478478...
(v) 1.101001000100001...
In Fig. 9.26, A, B, C and D are four points on a circle. AC and BD intersect at a point E such that ∠ BEC = 130° and ∠ ECD = 20°. Find ∠ BAC.