Height (h) of cone = 15 cm
Let the radius of the cone be r.
Volume of cone = 1570 cm3
\(\frac{1}{3}\pi\)r²h = 1570 cm³
r² =\(\frac{\text{ (1570 cm³ × 3) }}{ \pi h}\)
r² = \(\frac{\text{(1570 cm³ × 3) }}{\text{ (3.14 × 15 cm) }}\)= 100 cm²
r = \(\sqrt{100}\) cm²
r = 10 cm
Therefore, the radius of the base of cone is 10 cm.

Section A | Section B | ||
|---|---|---|---|
Marks | Frequency | Marks | Frequency |
0 − 10 | 3 | 0 − 10 | 5 |
10 − 20 | 9 | 10 − 20 | 19 |
20 − 30 | 17 | 20 − 30 | 15 |
30 − 40 | 12 | 30 − 40 | 10 |
40 − 50 | 9 | 40 − 50 | 1 |
Represent the marks of the students of both the sections on the same graph by two frequency polygons. From the two polygons compare the performance of the two sections.