Let $ A = \begin{bmatrix} 2 & 1 & 3 & -1 \\1 & -2 & 2 & -3 \end{bmatrix}, B = \begin{bmatrix} 2 & 1 & 0 & 3 \\1 & -1 & 2 & 3 \end{bmatrix} $, and the equation $ 2A + 3B - 5C = 0 $. Find the matrix $ C $.
At $ x = \frac{\pi^2}{4} $, $ \frac{d}{dx} \left( \operatorname{Tan}^{-1}(\cos \sqrt{x}) + \operatorname{Sec}^{-1}(e^x) \right) = $At $ x = \frac{\pi^2}{4} $, $ \frac{d}{dx} \left( \operatorname{Tan}^{-1}(\cos \sqrt{x}) + \operatorname{Sec}^{-1}(e^x) \right) = $