At $ x = \frac{\pi^2}{4} $, $ \frac{d}{dx} \left( \operatorname{Tan}^{-1}(\cos \sqrt{x}) + \operatorname{Sec}^{-1}(e^x) \right) = $
At $ x = \frac{\pi^2}{4} $, $ \frac{d}{dx} \left( \operatorname{Tan}^{-1}(\cos \sqrt{x}) + \operatorname{Sec}^{-1}(e^x) \right) = $
Step 1: Differentiate $ \operatorname{Tan}^{-1}(\cos \sqrt{x}) $.} $ \frac{d}{dx}(\operatorname{Tan}^{-1}(\cos \sqrt{x})) = \frac{-\sin \sqrt{x}}{1 + \cos^2 \sqrt{x}} \cdot \frac{1}{2\sqrt{x}} $ At $ x = \frac{\pi^2}{4} $: $ \frac{-\sin(\pi/2)}{1 + \cos^2(\pi/2)} \cdot \frac{1}{2(\pi/2)} = \frac{-1}{1 + 0} \cdot \frac{1}{\pi} = -\frac{1}{\pi} $
Step 2: Differentiate $ \operatorname{Sec}^{-1}(e^x) $.} $ \frac{d}{dx}(\operatorname{Sec}^{-1}(e^x)) = \frac{1}{|e^x|\sqrt{e^{2x} - 1}} \cdot e^x = \frac{1}{e^x\sqrt{e^{2x} - 1}} \cdot e^x = \frac{1}{\sqrt{e^{2x} - 1}} $ At $ x = \frac{\pi^2}{4} $: $ \frac{1}{\sqrt{e^{2(\pi^2/4)} - 1}} = \frac{1}{\sqrt{e^{\frac{\pi^2}{2}} - 1}} $
Step 3: Add the derivatives.
$ -\frac{1}{\pi} + \frac{1}{\sqrt{e^{\frac{\pi^2}{2}} - 1}} = \frac{1}{\sqrt{e^{\frac{\pi^2}{2}} - 1}} - \frac{1}{\pi} $
Step 4: Conclusion.
The value of the derivative at $ x = \frac{\pi^2}{4} $ is $ \frac{1}{\sqrt{e^{\frac{\pi^2}{2}} - 1}} - \frac{1}{\pi} $.
The general solution of the differential equation: \[ (6x^2 - 2xy - 18x + 3y) dx - (x^2 - 3x) dy = 0 \]
$ \lim_{x \to -\frac{3}{2}} \frac{(4x^2 - 6x)(4x^2 + 6x + 9)}{\sqrt{2x - \sqrt{3}}} $