Step 1: Analyze the integrand.
We are given:
\( a = 2n \), an even number,
\( b = 2m+1 \), an odd number,
So the integrand becomes: \( f(x) = e^{\sin^2 x} \cdot \cot^b((2n+1)x) \)
Step 2: Check the symmetry of the function.
We check whether the function is odd over the symmetric interval \([-\pi, \pi]\):
\[
f(-x) = e^{\sin^2 (-x)} \cdot \cot^b((2n+1)(-x)) = e^{\sin^2 x} \cdot [-\cot((2n+1)x)]^b
\]
Since \( b \) is odd, this becomes:
\[
f(-x) = -e^{\sin^2 x} \cdot \cot^b((2n+1)x) = -f(x)
\]
So, \( f(x) \) is an odd function.
Step 3: Use the property of definite integrals.
If \( f(x) \) is an odd function, then:
\[
\int_{-a}^{a} f(x)\, dx = 0
\]
\[
\Rightarrow \int_{-\pi}^{\pi} e^{\sin^2 x} \cot^b((2n+1)x) \, dx = 0
\]