Let \( f : \mathbb{R} \to \mathbb{R} \) be a twice differentiable function such that \( f(x + y) = f(x) f(y) \) for all \( x, y \in \mathbb{R} \). If \( f'(0) = 4a \) and \( f \) satisfies \( f''(x) - 3a f'(x) - f(x) = 0 \), where \( a > 0 \), then the area of the region R = {(x, y) | 0 \(\leq\) y \(\leq\) f(ax), 0 \(\leq\) x \(\leq\) 2 is :
If \(\cos \alpha + \cos \beta + \cos \gamma = \sin \alpha + \sin \beta + \sin \gamma = 0,\) then evaluate \((\cos^3 \alpha + \cos^3 \beta + \cos^3 \gamma)^2 + (\sin^3 \alpha + \sin^3 \beta + \sin^3 \gamma)^2 =\)
If the sum of two roots of \( x^3 + px^2 + qx - 5 = 0 \) is equal to its third root, then \( p(q^2 - 4q) = \) ?