$ \int_{0}^{\frac{\pi}{2}} \frac{\sum_{n=0}^{4} \sin \left( \frac{n\pi}{4} + x \right)}{\cos x + \sin x} dx = $
Show Hint
Simplify the summation before integrating. Use the property $ \int_{0}^{a} f(x) dx = \int_{0}^{a} f(a - x) dx $ for integrals of the form $ \int_{0}^{\frac{\pi}{2}} \frac{\cos x}{\cos x + \sin x} dx $.