Question:

The line $ x + y + 2 = 0 $ intersects the circle $ x^2 + y^2 + 4x - 4y - 4 = 0 $ in two points $ A $ and $ B $. Let $ S = x^2 + y^2 + 2gx + 2fy + c = 0 $ be a different circle passing through the points $ A $ and $ B $. If the distance of the centre of $ S $ from $ AB $ is $ \sqrt{2} $, then $ g + f + c = $:

Show Hint

For a circle passing through two points, use the points to form equations. The distance from a point to a line \( ax + by + c = 0 \) is \( \frac{|ax_0 + by_0 + c|}{\sqrt{a^2 + b^2}} \).
Updated On: May 9, 2025
  • \( 12 \)
  • \( 8 \)
  • \( 6 \)
  • \( 0 \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

Step 1: Find the intersection points \( A \) and \( B \).
Line: \( y = -x - 2 \). Circle: \( x^2 + y^2 + 4x - 4y - 4 = 0 \). Substitute:
\[ x^2 + (-x - 2)^2 + 4x - 4(-x - 2) - 4 = 0 \quad \Rightarrow \quad 2x^2 + 12x + 8 = 0 \quad \Rightarrow \quad x^2 + 6x + 4 = 0. \] \[ x = -3 \pm \sqrt{5}. \] \[ A = (-3 + \sqrt{5}, 1 - \sqrt{5}), \quad B = (-3 - \sqrt{5}, 1 + \sqrt{5}). \] Step 2: Circle \( S \) passing through \( A \) and \( B \).
\( S = x^2 + y^2 + 2gx + 2fy + c = 0 \). Using \( A \):
\[ 14 - 8\sqrt{5} + 2g(-3 + \sqrt{5}) + 2f(1 - \sqrt{5}) + c = 0. \quad (1) \] Using \( B \):
\[ 14 + 8\sqrt{5} + 2g(-3 - \sqrt{5}) + 2f(1 + \sqrt{5}) + c = 0. \quad (2) \] Subtract: \( f = g - 4 \). Substitute into (1): \( c = 4g - 6 \).
Step 3: Distance from centre of \( S \) to \( AB \).
Centre: \( (-g, -g + 4) \). Line: \( x + y + 2 = 0 \). Distance = \( \sqrt{2} \):
\[ \frac{|-2g + 6|}{\sqrt{2}} = \sqrt{2} \quad \Rightarrow \quad g = 2 \text{ or } 4. \] For \( g = 2 \): \( f = -2 \), \( c = 2 \), \( g + f + c = 2 \).
For \( g = 4 \): \( g + f + c = 14 \). Option 2 matches.
Was this answer helpful?
0
0

Questions Asked in AP EAPCET exam

View More Questions