Step 1: Substitute \( f(x) \) into the integral:
\[
\int x^{n-2} \cdot \frac{x}{(1 + nx^n)^{1/n}} \, dx = \int \frac{x^{n-1}}{(1 + nx^n)^{1/n}} \, dx
\]
Step 2: Let \( u = 1 + nx^n \). Then, \( du = n x^{n-1} \, dx \).
Step 3: Substitute into the integral:
\[
\int \frac{1}{u^{1/n}} \cdot \frac{du}{n} = \frac{1}{n} \int u^{-1/n} \, du
\]
Step 4: Integrating \( u^{-1/n} \):
\[
\frac{1}{n} \cdot \frac{u^{1 - n}}{1 - n} + C = \frac{1}{n(n-1)} (1 + nx^n)^{1 - \frac{1}{n}} + C
\]
Thus, the correct answer is:
\[
\boxed{\frac{1}{n(n-1)} (1 + nx^n)^{1 - \frac{1}{n}} + C}
\]