Step 1: Use the condition that matrix \(A\) is symmetric.
A matrix is symmetric if \( A = A^T \), i.e., \( a_{ij} = a_{ji} \). So for matrix \(A\), this gives:
\[
A = \begin{pmatrix}
1 & 2 & 1 \\
2 & 2 & x \\
y & 1 & 2
\end{pmatrix}
\Rightarrow x = 1 \quad \text{and} \quad y = 1
\]
Step 2: Substitute \(x = 1\), \(y = 1\) into matrix \(A\):
\[
A = \begin{pmatrix}
1 & 2 & 1 \\
2 & 2 & 1 \\
1 & 1 & 2
\end{pmatrix}
\]
Step 3: Use the condition that \(A\) is singular.
A matrix is singular if \( \det(A) = 0 \). Compute the determinant:
\[
\det(A) =
1 \cdot \begin{vmatrix}
2 & 1 \\
1 & 2
\end{vmatrix}
- 2 \cdot \begin{vmatrix}
2 & 1 \\
1 & 2
\end{vmatrix}
+ 1 \cdot \begin{vmatrix}
2 & 1 \\
1 & 1
\end{vmatrix}
\]
\[
= 1(4 - 1) - 2(4 - 1) + 1(2 - 1) = 3 - 6 + 1 = -2 \neq 0
\]
So, the matrix is not singular for \(x = 1\), \(y = 1\).
Conclusion: There are no values of \(x, y\) that make the matrix both symmetric and singular.