The integral
\[
\int \frac{1 + x \cos x}{x \left[ 1 - x^2 \left( e^{\sin x} \right)^2 \right]} \, dx
\]
Options:
Show Hint
When solving integrals involving exponential and trigonometric functions, recognize patterns and apply standard substitution or logarithmic integration techniques to simplify the problem.
We are tasked with solving the integral:
\[
I = \int \frac{1 + x \cos x}{x \left[ 1 - x^2 \left( e^{\sin x} \right)^2 \right]} \, dx
\]
Step 1: Simplify the integrand.
The expression can be simplified by recognizing the pattern in the denominator. The key part of the denominator suggests the use of a trigonometric substitution or simplifying the exponential terms to make the integral more manageable.
\[
I = \int \frac{1 + x \cos x}{x \left[ 1 - x^2 \left( e^{\sin x} \right)^2 \right]} \, dx
\]
Step 2: Apply integration technique.
To solve this, we use standard integration techniques that involve simplifying logarithmic integrals and using properties of exponents.
The integral results in the following expression:
\[
\frac{1}{2} \log \left| \frac{(xe^{\sin x})^2}{(xe^{\sin x})^2 - 1} \right| + c
\]
Final Answer:
\[
\boxed{\frac{1}{2} \log \left| \frac{(xe^{\sin x})^2}{(xe^{\sin x})^2 - 1} \right| + c}
\]