Step 1: Simplify the trigonometric terms.
Using $1 + \cos 2x = 2 \cos^2 x$ and $\sin 2x = 2 \sin x \cos x$, the integrand becomes:
$$ e^{-2x} \left( \frac{1 - 2 \sin x \cos x}{2 \cos^2 x} \right) = e^{-2x} \left( \frac{1}{2} \sec^2 x - \tan x \right) $$
Step 2: Recognize the form of the derivative of a product.
Consider the derivative of $ \frac{1}{2} e^{-2x} \tan x $:
$$ \frac{d}{dx} \left( \frac{1}{2} e^{-2x} \tan x \right) = \frac{1}{2} \left( e^{-2x} (\sec^2 x) + (\tan x) (-2e^{-2x}) \right) $$
$$ = \frac{1}{2} e^{-2x} (\sec^2 x - 2 \tan x) = e^{-2x} \left( \frac{1}{2} \sec^2 x - \tan x \right) $$
This matches the integrand.
Step 3: Integrate both sides.
$$ \int e^{-2x} \left( \frac{1}{2} \sec^2 x - \tan x \right) dx = \int \frac{d}{dx} \left( \frac{1}{2} e^{-2x} \tan x \right) dx $$
$$ I = \frac{1}{2} e^{-2x} \tan x + C $$
Thus, the integral is $ \boxed{\frac{1}{2} e^{-2x} \tan x + c} $.