Step 1: Set up the geometry.
Cone’s height \( h = kR \), base radius \( r \). Sphere’s centre at origin, equation \( x^2 + y^2 + z^2 = R^2 \). Base at \( z = -d \), vertex at \( (0, 0, h - d) \).
Base: \( x^2 + y^2 = R^2 - d^2 \), so \( r = R \sqrt{1 - (k - 1)^2} \). Vertex: \( h - d = R \), so \( d = R(k - 1) \).
Step 2: Compute the volume ratio.
\[
V_{\text{cone}} = \frac{1}{3} \pi R^3 k (2k - k^2), \quad V_{\text{sphere}} = \frac{4}{3} \pi R^3, \quad \text{Ratio} = \frac{2k^2 - k^3}{4}.
\]
Step 3: Maximize the volume.
Maximize \( 2k^2 - k^3 \): critical point at \( k = \frac{4}{3} \). Substitute:
\[
\text{Ratio} = \frac{2 \left( \frac{4}{3} \right)^2 - \left( \frac{4}{3} \right)^3}{4} = \frac{8}{27} \quad \Rightarrow \quad 8:27.
\]