Let $ f(x) = \frac{x}{\sqrt{1- x}}$ + $\frac{\sqrt{1- x}}{x}$. If $ \lim_{x _ 1^-} f(x) = l $ and $ \lim_{x \to m} f(x) = \frac{5}{2} $, then the set of all possible finite values of $ l $ and $ m $ is
If $ P(2, 3) $ and $ Q(-1, 2) $ are conjugate points with respect to the circle $ x^2 + y^2 + 2gx + 3y - 2 = 0 $ then the radius of the circle is
If a straight line is equally inclined at an angle $ \theta $ with all the three coordinate axes, then $ \tan \theta =$
The vector equation of any plane passing through the line of intersection of the planes $ \bar{r} \cdot \bar{n}_1 = q_1 $ and $ \bar{r} \cdot \bar{n}_2 = q_2 $ is given by $ \bar{r} \cdot (\bar{n}_1 + \lambda \bar{n}_2) = q_1 + \lambda q_2 $ for $ \lambda \in \bar{R} $. The vector equation of a plane passing through the point $ 2\bar{i} - 3\bar{j} + \bar{k} $ and the line of intersection of the planes $ \bar{r} \cdot (\bar{i} - 2\bar{j} + 3\bar{k}) = 5 $, $ \bar{r} \cdot (3\bar{i} + \bar{j} - 2\bar{k}) = 7 $ is