Let $ A = \begin{bmatrix} 2 & 1 & 3 & -1 \\1 & -2 & 2 & -3 \end{bmatrix}, B = \begin{bmatrix} 2 & 1 & 0 & 3 \\1 & -1 & 2 & 3 \end{bmatrix} $, and the equation $ 2A + 3B - 5C = 0 $. Find the matrix $ C $.
\( \begin{bmatrix} 2 & 1 & 6/5 & 7/5 \\1 & 7/5 & 2/5 & 3/5 \end{bmatrix} \)
\( \begin{bmatrix} -2 & 1 & 6/5 & 7/5 \\1 & -7/5 & 2/5 & 3/5 \end{bmatrix} \)
\( \begin{bmatrix} -2 & 1 & 6/5 & 7/5 \\1 & 7/5 & 2/5 & 3/5 \end{bmatrix} \)
\( \begin{bmatrix} 2 & 1 & 6/5 & 7/5 \\1 & -7/5 & 2 & 3/5 \end{bmatrix} \)
For a $3 \times 3$ matrix $A$, if $A(\operatorname{adj} A) = \begin{bmatrix} 99 & 0 & 0 \\0 & 99 & 0 \\0 & 0 & 99 \end{bmatrix}$, then $\det(A)$ is equal to: