Let $ A = \begin{bmatrix} 2 & 1 & 3 & -1 \\1 & -2 & 2 & -3 \end{bmatrix}, B = \begin{bmatrix} 2 & 1 & 0 & 3 \\1 & -1 & 2 & 3 \end{bmatrix} $, and the equation $ 2A + 3B - 5C = 0 $. Find the matrix $ C $.
\( \begin{bmatrix} 2 & 1 & 6/5 & 7/5 \\1 & 7/5 & 2/5 & 3/5 \end{bmatrix} \)
\( \begin{bmatrix} -2 & 1 & 6/5 & 7/5 \\1 & -7/5 & 2/5 & 3/5 \end{bmatrix} \)
\( \begin{bmatrix} -2 & 1 & 6/5 & 7/5 \\1 & 7/5 & 2/5 & 3/5 \end{bmatrix} \)
\( \begin{bmatrix} 2 & 1 & 6/5 & 7/5 \\1 & -7/5 & 2 & 3/5 \end{bmatrix} \)
If \[ A = \begin{bmatrix} 1 & 2 & 0 \\ -2 & -1 & -2 \\ 0 & -1 & 1 \end{bmatrix} \] then find \( A^{-1} \). Hence, solve the system of linear equations: \[ x - 2y = 10, \] \[ 2x - y - z = 8, \] \[ -2y + z = 7. \]