\[ \text{The domain of the real-valued function } f(x) = \sin^{-1} \left( \log_2 \left( \frac{x^2}{2} \right) \right) \text{ is} \]
Let \( A = [a_{ij}] \) be a \( 3 \times 3 \) matrix with positive integers as its elements. The elements of \( A \) are such that the sum of all the elements of each row is equal to 6, and \( a_{22} = 2 \).
\[ \textbf{If } | \text{Adj} \ A | = x \text{ and } | \text{Adj} \ B | = y, \text{ then } \left( | \text{Adj}(AB) | \right)^{-1} \text{ is } \]
\[ D = \begin{vmatrix} -\frac{bc}{a^2} & \frac{c}{a} & \frac{b}{a} \\ \frac{c}{b} & -\frac{ac}{b^2} & \frac{a}{b} \\ \frac{b}{c} & \frac{a}{c} & -\frac{ab}{c^2} \end{vmatrix} \]
The roots of the equation \( x^3 - 3x^2 + 3x + 7 = 0 \) are \( \alpha, \beta, \gamma \) and \( w, w^2 \) are complex cube roots of unity. If the terms containing \( x^2 \) and \( x \) are missing in the transformed equation when each one of these roots is decreased by \( h \), then
With respect to the roots of the equation \( 3x^3 + bx^2 + bx + 3 = 0 \), match the items of List-I with those of List-II.
The number of ways of arranging all the letters of the word "COMBINATIONS" around a circle so that no two vowels come together is
A man has 7 relatives, 4 of them are ladies and 3 gents; his wife has 7 other relatives, 3 of them are ladies and 4 gents. The number of ways they can invite them to a party of 3 ladies and 3 gents so that there are 3 of man's relatives and 3 of wife's relatives, is
If the coefficient of \( x^r \) in the expansion of \( (1 + x + x^2)^{100} \) is \( a_r \), and \( S = \sum\limits_{r=0}^{300} a_r \), then
\[ \sum\limits_{r=0}^{300} r a_r = \]
Given below are two statements, one is labelled as Assertion (A) and the other one labelled as Reason (R).Assertion (A): \[ 1 + \frac{2.1}{3.2} + \frac{2.5.1}{3.6.4} + \frac{2.5.8.1}{3.6.9.8} + \dots \infty = \sqrt{4} \] Reason (R): \[ |x| <1, \quad (1 - x)^{-1} = 1 + nx + \frac{n(n+1)}{1.2} x^2 + \frac{n(n+1)(n+2)}{1.2.3} x^3 + \dots \]
If \( 0 <\theta <\frac{\pi}{4} \) and \( 8\cos\theta + 15\sin\theta = 15 \), then \( 15\cos\theta - 8\sin\theta = \)
Suppose \( \theta_1 \) and \( \theta_2 \) are such that \( (\theta_1 - \theta_2) \) lies in the 3rd or 4th quadrant. If \[ \sin\theta_1 + \sin\theta_2 = \frac{21}{65} \quad \text{and} \quad \cos\theta_1 + \cos\theta_2 = \frac{27}{65} \] then \[ \cos\left(\frac{\theta_1 - \theta_2}{2}\right) = \]