The given four points are:
\[ \lambda \vec{a} + 3\vec{b} - \vec{c}, \quad \vec{a} - \lambda \vec{b} + 3\vec{c}, \quad 3\vec{a} + 4\vec{b} - \lambda \vec{c}, \quad \vec{a} - 6\vec{b} + 6\vec{c} \]
Since these points are coplanar, their position vectors must be linearly dependent. That is, the determinant of the coefficient matrix formed by subtracting the first vector from the others must be zero.
Compute the vectors relative to the first point:
\[ \vec{v_1} = (\vec{a} - \lambda \vec{b} + 3\vec{c}) - (\lambda \vec{a} + 3\vec{b} - \vec{c}) = (1 - \lambda) \vec{a} + (-\lambda - 3) \vec{b} + (3 + 1) \vec{c} \]
\[ \vec{v_2} = (3\vec{a} + 4\vec{b} - \lambda \vec{c}) - (\lambda \vec{a} + 3\vec{b} - \vec{c}) = (3 - \lambda) \vec{a} + (4 - 3) \vec{b} + (-\lambda + 1) \vec{c} \]
\[ \vec{v_3} = (\vec{a} - 6\vec{b} + 6\vec{c}) - (\lambda \vec{a} + 3\vec{b} - \vec{c}) = (1 - \lambda) \vec{a} + (-6 - 3) \vec{b} + (6 + 1) \vec{c} \]
Since these three vectors are linearly dependent, their determinant must be zero:
\[ \begin{vmatrix} 1 - \lambda & -\lambda - 3 & 4 \\ 3 - \lambda & 1 & -\lambda + 1 \\ 1 - \lambda & -9 & 7 \end{vmatrix} = 0 \]
Expanding along the first row:
\[ (1 - \lambda) \begin{vmatrix} 1 & -\lambda + 1 \\ -9 & 7 \end{vmatrix} - (-\lambda - 3) \begin{vmatrix} 3 - \lambda & -\lambda + 1 \\ 1 - \lambda & 7 \end{vmatrix} + 4 \begin{vmatrix} 3 - \lambda & 1 \\ 1 - \lambda & -9 \end{vmatrix} = 0 \]
Solving the determinant and simplifying gives:
\[ \lambda = 2 \quad \text{(one of the possible values)} \]
Answer: \( \lambda = 2 \)
Given the vectors:
\[ \mathbf{a} = \mathbf{i} + 2\mathbf{j} + \mathbf{k} \]
\[ \mathbf{b} = 3(\mathbf{i} - \mathbf{j} + \mathbf{k}) = 3\mathbf{i} - 3\mathbf{j} + 3\mathbf{k} \]
where
\[ \mathbf{a} \times \mathbf{c} = \mathbf{b} \]
\[ \mathbf{a} \cdot \mathbf{x} = 3 \]
Find:
\[ \mathbf{a} \cdot (\mathbf{x} \times \mathbf{b} - \mathbf{c}) \]
\( \vec{a}, \vec{b}, \vec{c} \) are three vectors such that \(|\vec{a}| = 3\), \(|\vec{b}| = 2\sqrt{2}\), \(|\vec{c}| = 5\), and \( \vec{c} \) is perpendicular to the plane of \( \vec{a} \) and \( \vec{b} \).
If the angle between the vectors \( \vec{a} \) and \( \vec{b} \) is \( \frac{\pi}{4} \), then
\[ |\vec{a} + \vec{b} + \vec{c}| = \ ? \]
If three numbers are randomly selected from the set \( \{1,2,3,\dots,50\} \), then the probability that they are in arithmetic progression is:
A student has to write the words ABILITY, PROBABILITY, FACILITY, MOBILITY. He wrote one word and erased all the letters in it except two consecutive letters. If 'LI' is left after erasing then the probability that the boy wrote the word PROBABILITY is: \