\( \frac{t}{2} \)
Step 1: Find the coordinates of \( P \)
For the parabola \( S' = y^2 + ax = 0 \), the parametric coordinates are: \[ P(t) = \left( -\frac{t^2}{a}, t \right). \]
Step 2: Find the feet of perpendiculars \( A \) and \( B \)
- \( A \) is the foot of the perpendicular from \( P \) to the \( x \)-axis: \[ A = \left( -\frac{t^2}{a}, 0 \right). \] - \( B \) is the foot of the perpendicular from \( P \) to the \( y \)-axis: \[ B = (0, t). \]
Step 3: Find the equation of line \( AB \)
The slope of line \( AB \) is: \[ m = \frac{t - 0}{0 - (-t^2/a)} = \frac{t}{t^2/a} = \frac{a}{t}. \] Equation of \( AB \): \[ y - 0 = \frac{a}{t} \left( x + \frac{t^2}{a} \right). \] \[ y = \frac{a}{t} x + \frac{t^2}{t} = \frac{a}{t} x + t. \]
Step 4: Condition for tangency to \( S = 0 \)
The equation of the tangent to \( S = y^2 - 4ax = 0 \) at \( Q(t_1) \) is: \[ yy_1 = 2a(x + x_1). \] Substituting \( y_1 = t_1 \) and \( x_1 = \frac{t_1^2}{4a} \): \[ yt_1 = 2a \left( x + \frac{t_1^2}{4a} \right). \] Rewriting: \[ y = \frac{2a}{t_1} x + \frac{t_1}{2}. \] Comparing slopes: \[ \frac{a}{t} = \frac{2a}{t_1}. \] \[ t_1 = \frac{2t}{2} = \frac{t}{2}. \]
Step 5: Conclusion
Thus, the correct answer is: \[ \mathbf{\frac{t}{2}}. \]
In the given figure, the numbers associated with the rectangle, triangle, and ellipse are 1, 2, and 3, respectively. Which one among the given options is the most appropriate combination of \( P \), \( Q \), and \( R \)?

The center of a circle $ C $ is at the center of the ellipse $ E: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 $, where $ a>b $. Let $ C $ pass through the foci $ F_1 $ and $ F_2 $ of $ E $ such that the circle $ C $ and the ellipse $ E $ intersect at four points. Let $ P $ be one of these four points. If the area of the triangle $ PF_1F_2 $ is 30 and the length of the major axis of $ E $ is 17, then the distance between the foci of $ E $ is:
In a messenger RNA molecule, untranslated regions (UTRs) are present at:
I. 5' end before start codon
II. 3' end after stop codon
III. 3' end before stop codon
IV. 5' end after start codon