>
TS EAMCET
>
Mathematics
List of top Mathematics Questions asked in TS EAMCET
$7\hat{i}-4\hat{j}+7\hat{k}, \hat{i}-6\hat{j}+10\hat{k}, -\hat{i}-3\hat{j}+4\hat{k}, 5\hat{i}-\hat{j}+\hat{k}$ are the position vectors of the points A, B, C, D respectively. If $p\hat{i} + q\hat{j} + r\hat{k}$ is the position vector of the point of intersection of the diagonals of the quadrilateral ABCD, then $p+q+r=$
TS EAMCET - 2025
TS EAMCET
Mathematics
Vector Algebra
The differential equation of a family of hyperbolas whose axes are parallel to coordinate axes, centres lie on the line $y=2x$ and eccentricity is $\sqrt{3}$ is
TS EAMCET - 2025
TS EAMCET
Mathematics
Differential equations
The general solution of the differential equation $(x^3-y^3)dx = (x^2y-xy^2)dy$ is
TS EAMCET - 2025
TS EAMCET
Mathematics
Differential equations
$\int e^x(x^3-2x^2+3x-4)dx =$
TS EAMCET - 2025
TS EAMCET
Mathematics
Integration
$\int_0^{\pi/2} \frac{1}{5\cos^2 x + 16\sin^2 x + 8\sin x \cos x} dx =$
TS EAMCET - 2025
TS EAMCET
Mathematics
Integration
$\int_4^{18} \frac{1}{(x+2)\sqrt{x-3}}dx = $
TS EAMCET - 2025
TS EAMCET
Mathematics
Integration
$\int \frac{x\text{Tan}^{-1}x}{(1+x^2)^2}dx =$
TS EAMCET - 2025
TS EAMCET
Mathematics
Integration
If $[\cdot]$ denotes the greatest integer function, then $\int_1^2 [x^2] dx =$
TS EAMCET - 2025
TS EAMCET
Mathematics
Integration
$\int \frac{\log x}{(1+x)^2}dx = $
TS EAMCET - 2025
TS EAMCET
Mathematics
Integration
$\int(1+\tan^2 x)(1+2x\tan x)dx =$
TS EAMCET - 2025
TS EAMCET
Mathematics
Integration
If the normal drawn at the point P on the curve $y^2 = x^2-x+1$ makes equal intercepts on the coordinate axes, then the equation of the tangent drawn to the curve at P is
TS EAMCET - 2025
TS EAMCET
Mathematics
Application of derivatives
If a balloon flying at an altitude of 30 m from an observer at a particular instant is moving horizontally at the rate of 1 m/s away from him, then the rate at which the balloon is moving away directly from the observer at the 40th second is (in m/s)
TS EAMCET - 2025
TS EAMCET
Mathematics
Application of derivatives
The approximate value of $\sqrt{6560}$ is
TS EAMCET - 2025
TS EAMCET
Mathematics
Application of derivatives
If a normal is drawn at a variable point P(x, y) on the curve $9x^2+16y^2-144=0$, then the maximum distance from the centre of the curve to the normal is
TS EAMCET - 2025
TS EAMCET
Mathematics
Conic sections
A real valued function
$f:[4, \infty) \to \mathbb{R}$ is defined as $f(x) = (x^2+x+1)^{(x^2-3x-4)}$, then f is
TS EAMCET - 2025
TS EAMCET
Mathematics
Application of derivatives
If $f(x) = \log_{(x-1)^2}(x^2-3x+2)$, $x \in \mathbb{R}-[1,2]$ and $x\neq0$, then $f'(3)=$
TS EAMCET - 2025
TS EAMCET
Mathematics
Differentiation
If $y=(1-x^2)\text{Tanh}^{-1}x$ then $\frac{d^2y}{dx^2}=$
TS EAMCET - 2025
TS EAMCET
Mathematics
Differentiation
The values of x at which the real valued function $f(x)=7|2x+1|-19|3x-5|$ is not differentiable is
TS EAMCET - 2025
TS EAMCET
Mathematics
Differentiation
If $y^3=x$ then the value of $\frac{dy}{dx}$ at $x=1$ is
TS EAMCET - 2025
TS EAMCET
Mathematics
Differentiation
If $\{x\}=x-[x]$ where $[x]$ is the greatest integer $\le x$ and $\lim_{x\to 0^+} \frac{\text{Cos}^{-1}(1-\{x\}^2)\text{Sin}^{-1}(1-\{x\})}{\{x\}-\{x\}^3} = \theta$, then $\tan\theta=$
TS EAMCET - 2025
TS EAMCET
Mathematics
Limits
For $a\neq0$ and $b\neq0$, if the real valued function $f(x) = \frac{\sqrt[4]{625+4x}-5}{\sqrt[4]{625+5bx}-5}$ is continuous at $x=0$, then $f(0) =$
TS EAMCET - 2025
TS EAMCET
Mathematics
Limits
Let P be a point on the ellipse $\frac{x^2}{9}+\frac{y^2}{4}=1$ and let the perpendicular drawn through P to the major axis meet its auxiliary circle at Q. If the normals drawn at P and Q to the ellipse and the auxiliary circle respectively meet in R, then the equation of the locus of R is
TS EAMCET - 2025
TS EAMCET
Mathematics
Conic sections
If the tangent drawn at the point $P(3\sqrt{2}, 4)$ on the hyperbola $\frac{x^2}{9}-\frac{y^2}{16}=1$ meets its directrix at $Q(\alpha, \beta)$ in the fourth quadrant then $\beta = $
TS EAMCET - 2025
TS EAMCET
Mathematics
Conic sections
If A(2,1,-1), B(6,-3,2), C(-3,12,4) are the vertices of a triangle ABC and the equation of the plane containing the triangle ABC is $53x+by+cz+d=0$, then $\frac{d}{b+c}=$
TS EAMCET - 2025
TS EAMCET
Mathematics
Three Dimensional Geometry
If $\theta$ is the acute angle between the tangents drawn from the point (1,5) to the parabola $y^2 = 9x$ then
TS EAMCET - 2025
TS EAMCET
Mathematics
Conic sections
Prev
1
2
3
...
23
Next