Evaluate the integral: \[ \int \frac{\sec x}{3(\sec x + \tan x) + 2} \,dx \]
Suppose \( \theta_1 \) and \( \theta_2 \) are such that \( (\theta_1 - \theta_2) \) lies in the 3rd or 4th quadrant. If \[ \sin\theta_1 + \sin\theta_2 = \frac{21}{65} \quad \text{and} \quad \cos\theta_1 + \cos\theta_2 = \frac{27}{65} \] then \[ \cos\left(\frac{\theta_1 - \theta_2}{2}\right) = \]
Among the 5 married couples, if the names of 5 men are matched with the names of their wives randomly, then the probability that no man is matched with the name of his own wife is ?
For \( n \in \mathbb{N} \), the largest positive integer that divides \( 81^n + 20n - 1 \) is \( k \). If \( S \) is the sum of all positive divisors of \( k \), then find \( S - k \).