\( 74.25 \)
Step 1: Identify the data set
The first 10 natural numbers that are multiples of 3 are: \[ 3, 6, 9, 12, 15, 18, 21, 24, 27, 30 \] This forms an arithmetic sequence where: - First term (\( a \)) = 3 - Common difference (\( d \)) = 3 - Number of terms (\( n \)) = 10
Step 2: Compute the mean (\( \mu \))
The mean of a sequence is given by: \[ \mu = \frac{\sum x_i}{n} \] Using the sum formula for an arithmetic sequence: \[ S_n = \frac{n}{2} (2a + (n-1)d) \] \[ S_{10} = \frac{10}{2} (2(3) + (10-1)3) \] \[ = 5(6 + 27) = 5(33) = 165 \] \[ \mu = \frac{165}{10} = 16.5 \]
Step 3: Compute the variance (\( \sigma^2 \))
Variance is given by: \[ \sigma^2 = \frac{1}{n} \sum (x_i - \mu)^2 \] Computing the squared differences: \[ (3 - 16.5)^2 = (-13.5)^2 = 182.25 \] \[ (6 - 16.5)^2 = (-10.5)^2 = 110.25 \] \[ (9 - 16.5)^2 = (-7.5)^2 = 56.25 \] \[ (12 - 16.5)^2 = (-4.5)^2 = 20.25 \] \[ (15 - 16.5)^2 = (-1.5)^2 = 2.25 \] \[ (18 - 16.5)^2 = (1.5)^2 = 2.25 \] \[ (21 - 16.5)^2 = (4.5)^2 = 20.25 \] \[ (24 - 16.5)^2 = (7.5)^2 = 56.25 \] \[ (27 - 16.5)^2 = (10.5)^2 = 110.25 \] \[ (30 - 16.5)^2 = (13.5)^2 = 182.25 \] Summing these: \[ 182.25 + 110.25 + 56.25 + 20.25 + 2.25 + 2.25 + 20.25 + 56.25 + 110.25 + 182.25 = 742.5 \] \[ \sigma^2 = \frac{742.5}{10} = 74.25 \] Thus, the correct answer is: \[ \mathbf{74.25} \]
Let the Mean and Variance of five observations $ x_i $, $ i = 1, 2, 3, 4, 5 $ be 5 and 10 respectively. If three observations are $ x_1 = 1, x_2 = 3, x_3 = a $ and $ x_4 = 7, x_5 = b $ with $ a>b $, then the Variance of the observations $ n + x_n $ for $ n = 1, 2, 3, 4, 5 $ is
Find the mean of the following distribution:
\[\begin{array}{|c|c|c|c|c|c|c|c|} \hline \textbf{Class-interval} & 11-13 & 13-15 & 15-17 & 17-19 & 19-21 & 21-23 & 23-25 \\ \hline \text{Frequency} & \text{7} & \text{6} & \text{9} & \text{13} & \text{20} & \text{5} & \text{4} \\ \hline \end{array}\]