The formula for the cosine of the angle between two vectors is given by:
\[
\cos \theta = \frac{l_1 l_2 + m_1 m_2 + n_1 n_2}{\sqrt{l_1^2 + m_1^2 + n_1^2} \cdot \sqrt{l_2^2 + m_2^2 + n_2^2}}
\]
Here, the direction ratios of the two lines are \( (3,0,2) \) and \( (0,2,k) \). Using the formula, we have:
\[
|\cos \theta| = \frac{3(0) + 0(2) + 2(k)}{\sqrt{3^2 + 0^2 + 2^2} \cdot \sqrt{0^2 + 2^2 + k^2}} = \frac{2k}{\sqrt{9 + 4} \cdot \sqrt{4 + k^2}}.
\]
Simplifying, we get:
\[
\frac{2k}{\sqrt{13} \cdot \sqrt{4 + k^2}} = \frac{6}{13}.
\]
Squaring both sides:
\[
\frac{4k^2}{13(4 + k^2)} = \frac{36}{169}.
\]
Cross-multiply to solve for \( k \), and we obtain:
\[
4k^2 = \frac{36}{169} \times 13(4 + k^2),
\]
which simplifies to \( k = \pm 3 \).
Thus, the correct answer is \( \boxed{k = \pm 3} \).